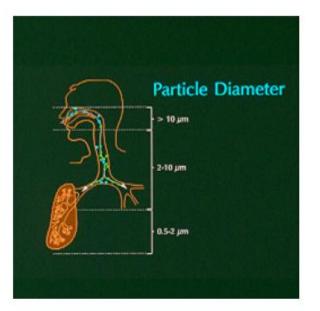


Major health benefits from energy efficiency in:


- Home energy
- Housing,
- Health care,
- Land use
- Transport

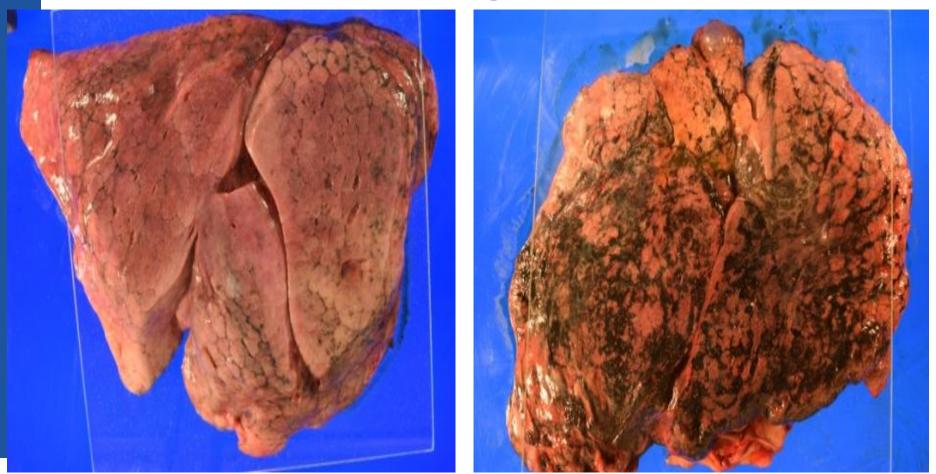
Air Pollution is a major risk to health and a sign of energy inefficiency

New evidence showing that particles smaller than 2.5µm penetrate <u>deep</u> into the lungs and effect the body more systematically leading to diseases like *stroke, heart disease, in addition to the cancers, COPD and pneumonia/URLI.*

PARTICLE SIZE AND DEPOSITION

PM<10µm – Coars

 $PM < 2.5 \mu m - Fine$


PM<1µm – Ultrafin

lealth and Environment

Lungs exposed to tobacco and to Indoor air pollution

Pathology slides - Courtesy Prof. Saldiva, São Paulo, Brazil

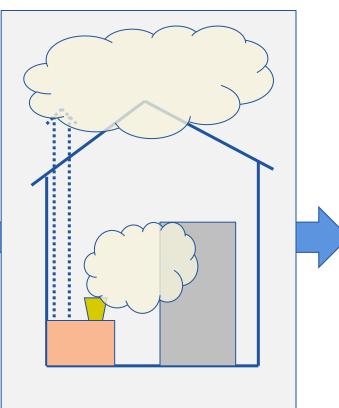
4 Dr Carlos Dora, Department of Public Health and Environment

HOUSEHOLD FUEL COMBUSTION Executive Summary

The links: Household energy fuels and technologies used for cooking, heating and lighting

New Air Quality Guidelines:

- Use only very efficient cookstoves (following emission rates provided by WHO)
- 2. Don't use Kerosene
- 3. Don't use Coal
- 4. Use clean fuels LPG, Biogas, ethanol...


Environment

Model linking emissions to air quality

Inputs:

- Emission rates:
 - PM2.5
 - CO
- Kitchen volume
- Air exchange rate
- Duration of use (hours per day)

Outputs:

- Predicted average concentrations of:
 - PM2.5
 - CO

•Assumes uniform mixing of pollutants and air in kitchen

Energy-efficient homes reduce air pollution & other housing risks such as...

Housing risks

- Indoor/outdoor air pollution
- Damp, mould & allergens
- Poor indoor ventilation
- Inefficient insulation/energy system
- Planning, transport access
- Urban waste, sanitation & water
- Heat Island
- Storms/flooding

Health impacts

- Chronic/acute respiratory disease
- Allergies, asthma
- Other NCDs
- Cold exposures morbidity/mortality
- Water and sanitation-borne disease
- Heat strokes
- Injuries

Interventions on housing E-Efficiency improve health

Improved
insulation saved
0.26 months of
life per person »
(UK Warm Front
Programme)

« Reduced wheezing, days-off school, doctors' visits were reported by occupants of insulated homes
« (NZ Insulation study)

Reduction of respiratory illness by 9% to 20% and increase of individual productivity between 0.48% and 11% with natural ventilation startegies

Health co-benefits in housing

Energy-efficient heating, cooling and natural ventilation can reduce strokes and respiratory illness as well as TB and vector-borne diseases;

A focus on slums /sub-standard housing - where needs are greatest/benefits could be multiplied

Solar hot water heating - India

10 Dr Carlos Dora, Department of Public Health and Environment

Access to clean/sustainable energy in Health Care

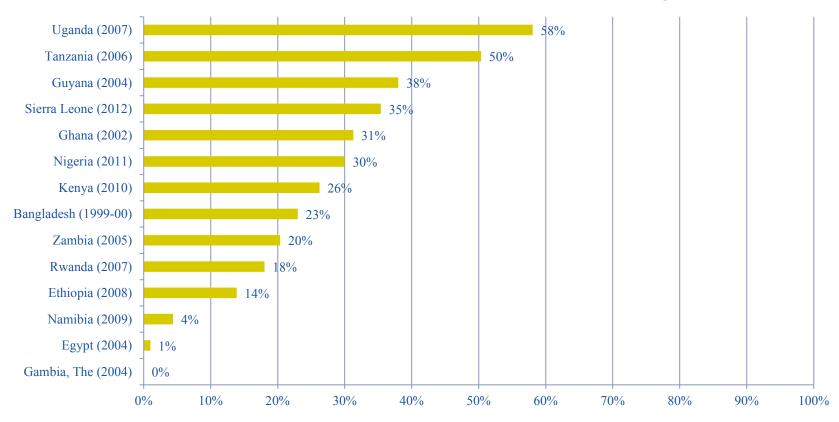
- Adopt energy efficient medical technologies
- Substitute diesel generators for sustainable sources (solar, hydro...)
- Access to sustainable transport
- Energy efficient buildings ...

Solar suitcase powering a health care facility in Nigeria. 11 Dr Carlos Dora, Department of Public Health and Environment

Solar powered refrigerator in Vietnam. World Health Organization

Low energy medical devices in resource constrained settings

- LED lighting for better visual management of patients
- Battery-powered ultrasound enables early treatment of multiple births, breach births, and placenta previa
- 1-3 Watt fetal heart monitors identify and manage birth complications
- Digital blood pressure devices – hypertension management


Response to a Silent "epidemic" of energy poverty – Initial WHO analysis African facilities

Survey	No. Countries	No Electricity	Unreliable Electricity	No/unreliable electricity	Method
DHS	5	18-58%	15-49%	-	Nationally representative
Global Fund	4	-	-	23-55%	Geographic Balance/high burden areas
WHO SAM/SARA	5	-	-	42-84%	Mix nationally representative /geographic balance

Help fill the energy gap in health care in developing countries

% of Health Care Facilities with No Electricity Access

•Figure 1: Impact of Energy Access on *Public Health.* Adapted from EC (2006).

15 Dr Carlos Dora, Department of Public Health and Environment

Integration of land use and transport define the "shape" of a urban growth as energy "obese" or "trim"

Suburban USA

The Geometry of Housing Densities-Transport Energy

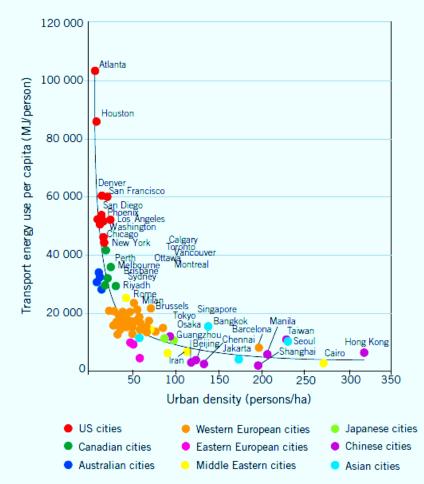


Fig. 4. Urban density and transport-related energy consumption

Medium density (European) cities achieve largest energy efficiency gains in comparison to North America.

Longer vehicle travel distances = more pollution emissions - although tailpipe controls may mitigate some emissions.

Public transport systems are less efficient in lowdensity/sprawl - destinations are too dispersed. So patronage declines sharply.

Source. WHO, 2012/International Association of Public Transport , 2005

Housing Density – also a determinant of home energy efficiencies, e.g.

Multi-unit buildings share walls, utility points and energy systems Planned, multi-unit development is an also an entry point for scaling up resilient, energy-efficient building technologies

- Cities with higher densities and mixed residential/commercial neighborhoods had significantly lower CO₂ emissions than suburban areas with strictly separated zones. (*Glaeser & Kahn, 2008*)
- In Toronto, a low-density suburban development used 2.5 X more energy than a condominium development in the centre city (*Norman J., et al 2006*)

Many developing cities, however, also are growing horizontally - in low-density extremes of slums and suburbs – the latter pictured below.

New suburb in China

Guragaon, India

Integration of housing, services/schools and recreation reduces travel & promotes active travel

- Land use planning one of most effective measures to promote physical activity (*WHO*, 2009)
- & reduce pollution: e.g. schools within walking distance to homes – reduce CO₂ emissions by 12%; shrinking businesshome distance by 20% in Santiago, Chile (*Barias et al, 2005*)

Copenhagen

Zona Rosa, Mexico City

Sustainable transport health benefits

- Reduce air pollution
- Increases physical activity
- Reduces traffic injury
- Frees urban road/parking for green spaces
- Facilitates more equitable access to mobility
- Eases movements of elderly, children, disabled, women
- Promotes social cohesion in local communities

More active travel from home to work = greater health

People who cycled to work had 30% lower premature mortality rates, on average, in long-term large population studies of Copenhagen and Shanghai commuters (Andrews et al, 2000; Matthews et al, 2007)

Urban transit – efficient and healthy

- Integrated urban energy use planning linking housing-density, services proximity, could reduce urban GHG emissions in Canada by 40-50% (*Bataille et al, 2009*)
- Packages of walkways, cycleways and BRT could reduce emissions by 25% in developing countries at low cost (*Wright, Fulton, 2005*)
- Efficient public transit, walking & cycling consistently associated with more physical activity, less obesity, and lower risk of road traffic injuries in WHO Health in Green Economy review (*WHO*, 2011)

Bus Rapid Transit -Curitiba, Brazil

Need to account and track the health benefits of E-efficiency measures and costs for inaction

Currently working on a model for strengthening capacity of urban stakeholders and the health sector to support decision making in other sectors with relevant information

'Green' clustered housing developments, Beijing

