GLOBAL OUTLOOK: KEY FINDINGS FROM RECENTLY-LAUNCHED HELE COAL ROADMAP

Dr. Keith Burnard

Senior Energy Analyst Energy Technology Policy Division International Energy Agency

Cleaner and more efficient coal technologies in Russia: Experts meeting 10 December 2012

Energy technology roadmaps

Technology roadmaps status

Energy technology roadmaps

Fossil fuels dominate energy demand

Efficiency improvement reduces specific fuel consumption and also reduces specific pollutant emissions.

Non-fossil power generation

Share of non-fossil generation has failed to keep pace with the growth in generation from fossil fuels, particularly coal.

Coal is abundant and widely available

Sufficient coal reserves exist for an 150 years of generation at current consumption rates.

What are HELE technologies?

Efficiency improvement reduces specific fuel consumption and also reduces specific pollutant emissions.

The size of the challenge is clear

Near-term projections are <u>not</u> consistent with a low-carbon scenario

Age distribution of existing power plants

Ageing infrastructure is the challenge in many OECD countries. Emerging economies have a growing demand for electricity.

Improve efficiency, then deploy CCS

Three processes essential to achieve a low-carbon scenario

8 Gt CO₂ reduction by 2050

Technology improvement coupled with targeted policy and regulation are essential to realise the 2DS target in 2050.

Best practice technology to be adopted

Potential for capacity growth in coal-fired power generation is seen mostly in non-OECD countries such as China and India.

Advanced technology is essential

Ultra-supercritical plants are currently operating in various countries, particularly in China.

The challenge of advanced USC

Nickel-based super-alloys will enable plant components to withstand temperatures of 700°C and beyond.

Moisture reduction important

Advanced lignite pre-drying in pulverised coal combustion

Impact of efficiency improvement on CO₂ abatement

Raising efficiency significantly reduces the CO_2/kWh emitted.

CCS is applied in power and industry

Recommended actions for the near term

- By 2020, CO₂ emissions from coal-fired power generation must already have peaked to be consistent with the 2DS.
- Greater efficiencies must be achieved in the power generation sector.
 - Deploying supercritical and ultra-supercritical technologies, both available now, will be important.
 - Even higher efficiencies will be achieved as A-USC and more advanced IGCC become available.
- Power generation from low-grade coals, such as lignite, can be much more efficient.
- CCS must be developed and demonstrated rapidly if it is to be deployed at a scale sufficient to achieve the 2DS.

Explore the data behind ETP

0 0	Emissions Reductions	Chara In 2035 Test Sensor 10 GICO2 Combutions to 2° creductions CCS 150 Rerevables 130 End-use F&B 310 End-use F&B 310 Ford writing 170 Nacier 195	Image: Construction Image: Const
ETP Report 2012 at a glance	1990 1995 2000 2005		 Feel switching Nuckear Power gen. E&F Scenarios of C−4⁺C of C−4⁺C of C−4⁺C

www.iea.org/etp