

Strategic Perspectives of **Clean Coal Technology** referring to Efficiency, Cost and Regulatory Issues Franz Bauer, VGB PowerTech e.V.

Introduction & Background

Future Requirements – Policy & Demand

Technology Perspectives

Economic Constraints

Conclusion

→Political Targets in the EU 27 Energy

- > 20 % Efficiency Increase
- > 20 % Renewables in Energy Sector
- ➢ to be achieved in 2020

and

de-carbonised in 2050

Economy

? most powerful 🔶 de-industrylised ?

Environment for Clean Technologies for Coal

- Regulatory Issues
- Characteristics coming Demand Pattern
- Development Potential
- Environmental Impact
- Economic Constraints

Criteria for Setting Priorities

the conventional Power Plant Fleet in the EU 27 is aged \rightarrow Need for the build-up of new Power Plants

Generation and Grid Interaction

Examples for different intermitting Generation Input to the System

for different wind conditions

Source: Fraunhofer IWES

VGB

Challenges → Impact of Increase of RES for Supply System

CO₂ Efficiency, Emissions and Fuel Comsumption

CO₂ reduction potential of coal-fired power plants¹) by increased efficiency

1) Average data for hard coal-fired power plants

Power Plant Concepts – an Overlook

time of technical maturity & efficiency potential

Plant Concept	state of the art	2020	2025	2030+
Combustion				
conventional process	46	51	53	53+
CO ₂ capture by MEA in flue gas		3842	3943	43+
Oxyfuel - cryo air separation		3943	4548	
Oxyfuel - membrane air separat				50+
CCGT				
conventional process	60	62	63	66+
CO ₂ capture by MEA in flue gas		4852	5155	5660
O ₂ combustion - membrane air separ	at			61+
IGCC				
conventional process	4346	5052	5457	62+
CO ₂ capture by methane combustion gasification - membrane air separa		4246	4750+	- 5055
			source Cooretec	

Efficiency increase of Power Plants

Fraction of Efficiency increase in Coal fired Power Plants in the period of 1985 - 2000

VGB Activities Technology Area

Topics

- \succ future Requirements for Power Plants (flexibility **&** more)
- System Stability Integration RES into the Supply System
- Scenario Analysis Energy Roadmap 2050
- Consolidation 600°CMaterials (T24 and others)
- COMTES+ for 700°C Technology
- Emission Issues as Mercury, NOx and others
- > Utilisation of Biomass
- Residuals as Gypsum and Fly Ash
- > Organisation
 - embedded in the Committee Structure
 - > activating Emax Steering Committee

VGB Activities

in pursuing the Development of Clean Coal Technologies

- Material Research
- > NRW Reference Plant \rightarrow state of the art
- ➤ AD700/COMTES700 → component test
- > COMTES+ \rightarrow ENCIO & HWT II
- > ZEP Technology Platform \rightarrow CCS Issues

Materials for Waterwalls

pulverised Coal Plant Technology state of the art Technology \rightarrow 600 °C

advanced USC/Ni Alloys → 700°C

NRW Reference Plant principal Design Data

- Gross capacity:

600 MW

- Type of boiler:	Tower-type boiler with vertical tubes and steam coil air heater
- Heat recovery:	Utilization of mill air heat recuperation
- Flue gas discharge:	Discharge via cooling tower
- Turbine model:	H30-40 / M30-63 / N30-2 x 16 m ²
- Main steam parameters:	285 bar / 600°C / 620°C
- Condenser pressure:	45 mbar
- Generator:	Water/hydrogen cooling
- Feed water heating stages:	8 feed water heaters + external desuperheater
- Feed water final temperature:	303.4°C
- Feed water pump concept:	3 x 50% electric motor-driven feed water pumps, variable-speed drive with planetary gearing

- Evaporator/superheater vertical tubing
- Superheater Ü1 support tube partition
- Superheater Ü2
- Superheater Ü3
- HP outlet header
- Reheater ZÜ1 Outlet
- Reheater ZÜ2
- Reheater outlet header

7CrMoVTiB 10 10 HCM 12 Super 304 H or TP 347 HFG HR3C or AC 66 P92 7CrMoVTiB 10 10, HCM 12 HR3C or AC66 P92

COMTES700 – Implementation into Boiler

Pre-Engineering Study PP 700 Principal Objectives & Tasks

- definition of reference case
- concentration on the 700 °C relevant issues
- implemeting the experiences (AD 700, Marcko, COMTES700)
- detailled analysis where necessary
- concept ready for Demo 700 PP
- inclusive credible parts for capture ready

Condition for Investments in the Electricity Sector

→ influencing factors

- \succ market regulations \rightarrow PPA or spot market
- Financing conditions
- cash flow
- > licensing procedure
- infrastructure
- > owner's engineering
- > project structure \rightarrow turn-key or lot-wise
- > supplier's issues
- > fuel prices \rightarrow long term perspective

..which Perspective? Politics - Investor

...to analyze/evaluate -> Options of different Policies

Cost	capex/opex as a f(time)
Time Line	when/what/how much
RES subsidies	cost (capex/opex)

 \rightarrow Obstacles = system stability/ transmission & distribution

!to be identified!

- **GDP** = Market Consequences
- → Cost! Security! Affordability! Sustainability!

Impact of low Load Factor on Generation Cost

POWERTECH

ALSTOM

Power Plant Trends Diverse technologies and emerging markets

Replacement in established markets + Investment in Emerging countries + Renewables

Conclusion

- even in a RES-driven Power Generation
 Need for back-up Power Generation
- absolute Must for R&D Activities for Coal
- ➢ burden sharing is the first Choice →Cooperation
- Consistency of Regulatory Framework
 Solution Strain Str

