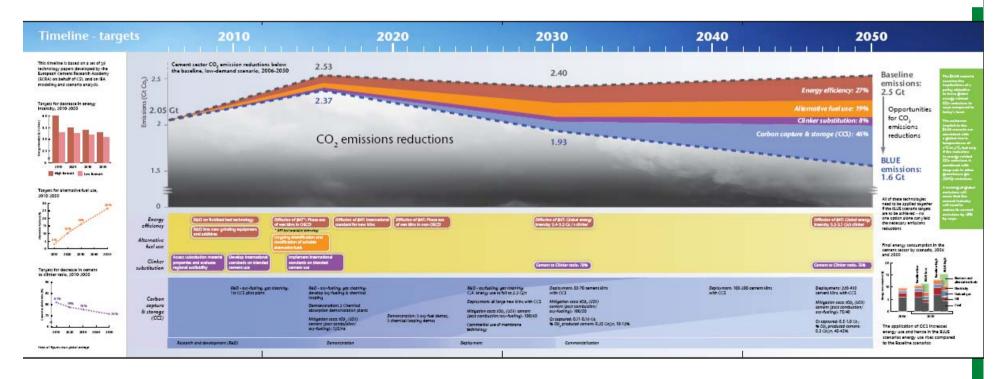
CCS in cement industry

Rob van der Meer January 30th, 2013

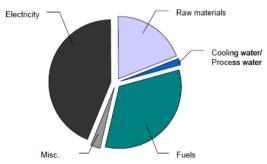
WBCSD/IEA cement technology roadmap 2009

4 Levers for CO₂ emissions reductions

 Energy efficiency 	27%
 Energy efficiency 	21


- Alternative fuels (biomass)19%
- Clinker substitution9%
- Carbon Capture and Storage 46%

Cement Technology Roadmap 2009
Carbon emissions reductions up to 2050


Slide 2

ECRA – European Cement Research Academy

- 2007 Start study on CCS application in cement industry
- 4th phase starts in 2013:

Pilot-scale research activities 2013/2015

- Post combustion trials in Brevik (Norway) scheduled
- Oxyfuel technology is promising technology
 - Simulation study (alternative fuels etc.)
 - Further development of advanced cooler design
 - Future air separation systems (membranes) for oxygen production
 - Concept for a pilot plant:
 - Design principle including concept for the integration of a pilot plant into an existing main plant site
- Cost estimations for investments
 - New oxyfuel plan (2050)
 270 295 M€
 - Retrofitting existing plant (2050)
 110 125 M€
- Operational costs at 40 60 €/ton CO₂

Key messages from the cement industry

1. Technology development

- Oxyfuel as promising new technology, after 2020 / 2025
- Post combustion absorption as intermediate solution?
- 2. Funding for R&D and demonstration plants needed
- 3. Global policies / CO₂ price needed for commercial implementation

4. Legislative framework

- Legislation needed at global
- Public acceptance will be key