

CCUS AG Working Group analysis to date

Workshop on behalf of Clean Energy Ministerial CCUS Action Group London, 30 January 2013

Simon Bennett
Carbon Capture and Storage
International Energy Agency

Process

July
Webinar

September
Working Group convened

October
Background paper drafted and circulated

November
Interviews and surveys

December
Policy paper drafted

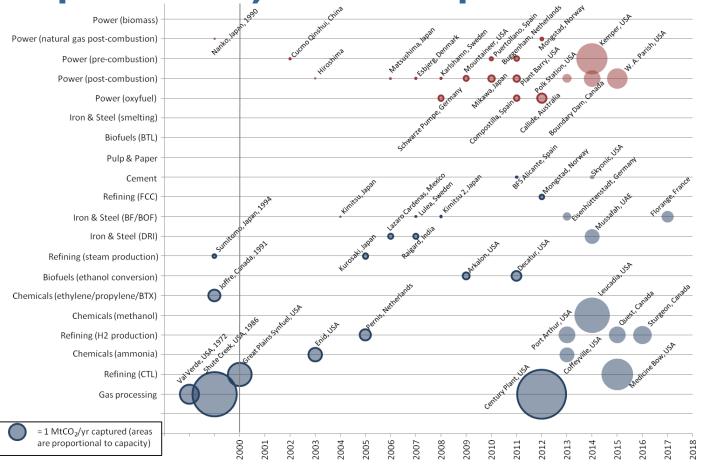
January
Policy paper circulated / Background paper finalised /

Workshop

■ **February** Comments received by 6 February 2013

Policy paper finalised by 28 February 2013

April CEM4 17-18 April 2013, New Delhi

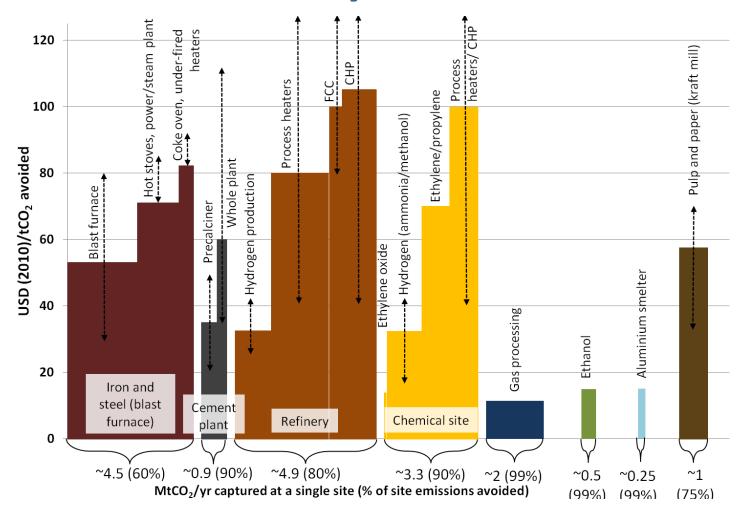

Background paper

Focus on technological readiness, technical options and sectoral dynamics

- Some sectors have mature technologies for CO₂ capture: refining (H₂), chemicals (ammonia, methanol), gas processing, biofuels (ethanol)
- Some sectors have not yet passed the pilot stage: cement, iron and steel, chemicals (crackers). The costs and options are not well understood
- Potentials change widely between sectors/regions: depends whether production is expanding or contracting, and what fuel is used
- Some demo projects are under development: US, CAN, FR, JP, KOR, CHN
- Many CCUS countries have no activities ongoing in the key sectors
- **Few incentive policies**: most industries are protected from full impacts of carbon pricing where it exists
- Some good examples of collaboration: ECRA, ULCOS, COURSE50

Lots of processes, lots of experience

But, while gas processing, refining and chemicals lead, others lag


Purity & pressure influence technology & cost

CO2 Source		CO2 Purity (by volume)	CO2 pressure		Possible Capture Processes					
Process	Sector	High purity Oxygen Syn- Flue enhanced gas Gas	Typical Stream Pressure (kPa)	Typical partial pressure (kPa)	Clean up only (e.g dehydration)	Cryogenic	Physical solvents	Adsorbents	Membranes	Chemical Solvents
Ethylene oxide	Chemicals	100%	2500	2500	V					
Fermentation	Biofuels	100%	100	100	V					
Cement kiln (oxyfuel)*	Cement	>90%	100	95	V					
Oxyfired and chemical looping coal	Power	80-98%	100	90	V	V				
DRI (coal- or gas-fired)	Iron and steel	?	100	?						
IGCC (oxy blown)*	Power	20-40%	2000 to 7000	500 to 3000						
Acid gas clean-up	Gas processing	2-65%	900 to 8000	20 to 5000			V		V	V
Blast furnace gas (Top gas recycling)	Iron and steel	60-75%	100	60 to 75				V		
Ethylene production	Chemicals	8-18%	2800	200 to 500				V		
Hydrogen production	Chemicals, Refining	15-20%	2200 to 2700	300 to 550				V		
IGCC (air blown)	Power	12-14%	2000 to 7000	250 to 1000					V	
Blast furnace gas	Iron and steel	14-33%	100	14 to 33						V
Cement kiln (airfired)	Cement	14-40%	100	14 to 40						V
Pulverised coal	Power	12-14%	100	12 to 14	2 2					V
Process heaters	Refining, Chemicals	3-13%	100	3 to 13						V
Gas boiler	Power	7-10%	100	7 to 10						V
Gas turbine	Power	3%	100	3			8 8			V

Note: *oxyfired processes require additional energy for the separation of air to produce oxygen.

Sizes & costs vary within & between sectors

- Steel mills and refineries often bigger than power plants
- Ammonia plants integrated with urea can be small
- Large uncertainties
- Depends on location

What are the messages for policymakers?

Sectors are at different levels of technical development

- Some industrial applications are the cheapest options for demonstrating the integrated CCS value chain today
- Flue gas scrubbing can be applied to a range of processes, but needs to be tailored. There is much scope for collaboration between sectors
- Optimising costs may mean redesigning plants, which has a perceived risk in conservative sectors. Pilot and then demonstration is needed

Countries need nuanced CCS and climate policies

- For sectors that trade internationally, the consequences of a rising carbon price need to be thoroughly understood for each region
- Different CCUS AG countries will have different priority sectors, depending on trade exposure, fuel sources and importance of sectors
- Most countries are not investing in developing CCS in a range of industrial applications. This suggests that collaboration will be crucial