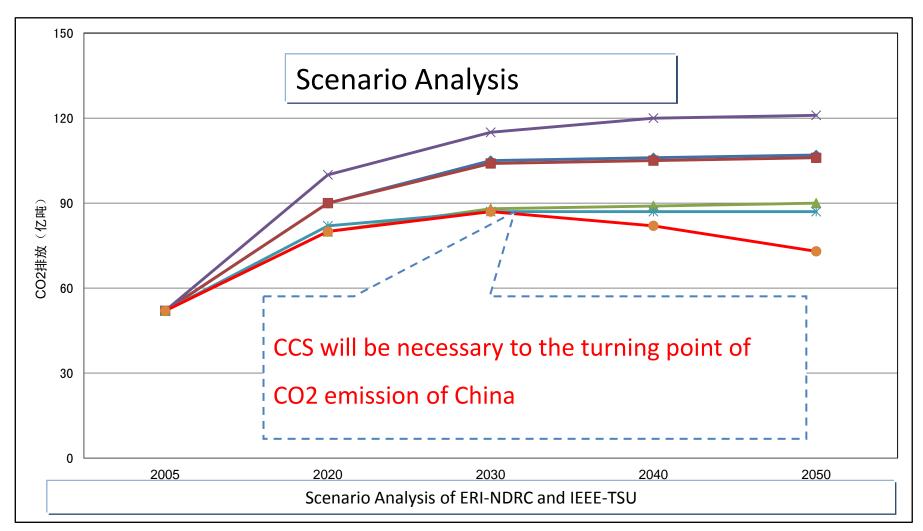


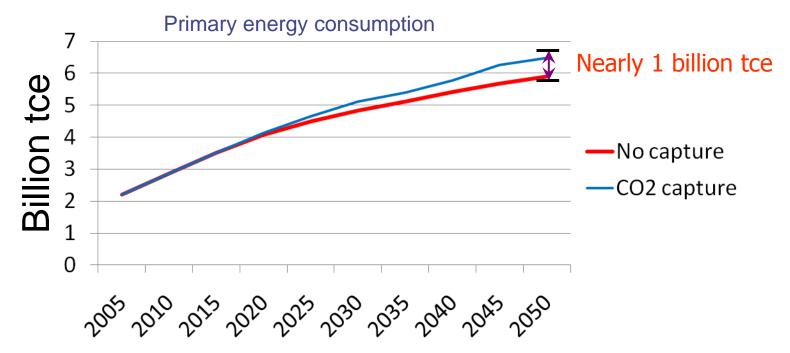
Supporting early CCS development in non-power industrial sectors


Dr. Lin Gao, Dr. Sheng Li

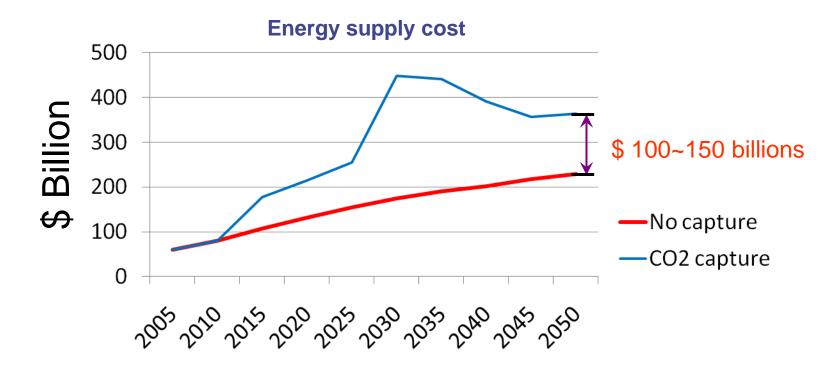
Institute of Engineering Thermophysics, Chinese Academy of Sciences

In collaboration with CLCF, ECN, Azure

20, Jan., 2013


Role of CCS in China

It is hard to reverse the ascend of CO_2 emission of China just relying on energy saving and renewable energy utilization


Background — Special Issues for CCS in China

large energy consumption plus *high energy penalty* (7~15%), with the existing CCS technologies

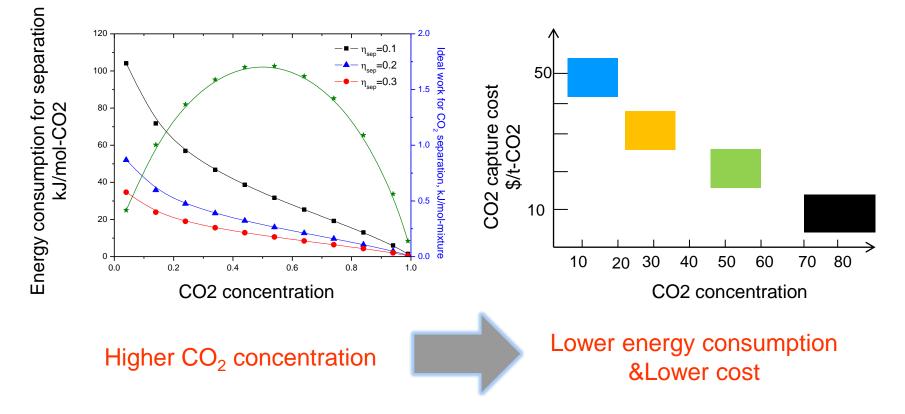
Nearly 0.7~1.0 billions tce/y of extra energy consumption for CCS in China by 2050 (keep 2005 emission level)

high cost (30~50\$/t) and *large amount* of CO2 to capture Based on the existing CCS technologies

More than One hundred billions \$ per year for CO₂ capture

Reducing the *penalty* of CCS technologies are *necessary* for Chinese sustainable development!

Great Passion but Fatal Defects


序号	项目名称	地点	规模	禾范内容	现状
1	中国石油吉林油田 CO ₂ EOR研究与示范	吉林油田	封存量:约10万吨/年	CCS-EOR	2007年投运
2	中科金龙 CO2 化工利用 项目	江苏泰兴	利用量:约 10000 吨/ 年	酒精厂 CO₂化 工利用	2007 年投运
3	华能集团北京热电厂捕 集试验项目	北京高碑店	捕集量: 3000 吨/年	燃烧后捕集	2008年投运
4	中海油 CO2 制可降解塑 料项目	海南东方市	利用量: 2100 吨/年	天然气分离 CO ₂ 化工利用	2009年投运
5	华能集团上海石洞口捕 集示范项目	上海石洞口	捕集量: 12 万吨/年	燃烧后捕集	2009年投运
6	<u>中电投重庆双槐电厂碳</u> 捕集示范项目	重庆合川	捕集量: 1万吨/年	燃烧后捕集	2010年投运
7	中石化胜利油田 CO2 捕 集和驱油示范	胜利油田	捕集和利用量 4 万吨/ 年	燃烧后捕集 CCS-EOR	2010年投运
8	连云港清洁煤能源动力 系统研究设施	江苏连云港	捕集量: 3万吨/年	燃烧前捕集	2011年投运
9	神华集团煤制油 CO2 捕 集和封存示范	内蒙古鄂尔 多斯	捕集量: 10 万吨/年 封存量: 约 10 万吨/年	煤液化厂捕集+ 咸水层	2011 年投运
10	新奥集团 <u>微藻固碳</u> 生物 能源示范项目	内蒙古达拉 特旗	拟利用量:约2万吨/ 年	煤化工烟气生 物利用	一期投产;二 期在建;三期 筹备
11	华能绿色煤电 IGCC 电 厂捕集利用和封存示范	天津滨海新 区	捕集量: 6-10 万吨/年	燃烧前捕集 CCS-EOR	2011 年启动
12	华中科技大学 35MWt 富 氧燃烧技术研究与示范	湖北应城市	捕集量: 5万吨/年	富氧燃烧捕集	2011 年启动
13	国电集团 CO2 捕集和利 用示范工程	天津塘沽区	捕集量:2万吨/年	燃烧后捕集	前期筹备
14	中石化煤制气 CO2 捕集 和驱油封存示范工程	胜利油田	捕集利用量: 70 万吨/ 年	煤制气捕集 CCS-EOR	前期筹备
15	中石化胜利油田 CO2 捕 集和封存驱油示范工程	胜利油田	捕集利用量: 50-100 万 吨/年	燃烧后捕集 CCS-EOR	前期筹备
16	内蒙古 CO2 地质储藏项 目	内蒙古准格 尔旗	拟封存量: 100 万吨/ 年	煤化工烟气捕 集+咸水层	前期筹备

Demo to Death The initial phase is very important to technologies

The future of technology maybe terminated by rash demos without solving the problem

Finding the breakpoint for new technology deployment is the key

Background for this project —Applying CCS in non-power sector

Non-Power sector: usually high purity CO₂ sources Low energy consumption & cost to promote demo project

High-purity CO₂ sources in nonpower sectors

	Plant type of CO ₂ source	CO ₂ purity	Purity class	Emission scale, Mt/y	Desulphu rization or not	Dehydrati on or not	Difficulty level of pre- treatment
Refining chemical	Refinery plant	8%	Low	0.1~0.6	Yes	Yes	Hard
plant	Ethylene plant	12%	Low	0.25~2.5	No	No	Hard
	Ethylene oxide plant	99%	High	0.2~1	Yes	No	Easy
	Hydrogen plant	99%	High	0.2~0.6	No	No	Easy

High-purity CO₂ sources in nonpower sectors

Chemical	Ammonia plant	99.5%	High	0.38~3.8	No	Νο	Easy
Fertilizer Plant	Methanol/DME plant	99%	High	0.25~2.5	No	No	Easy
Iron and Steel Plant		15%-25%	Low- medium	2 ~10	Yes	Yes	Hard
Cement factory	Cement plant	20%-25%	Low	0.1~2	Yes	Yes	Hard
Iron and Steel Plant		15%-25%	Low- medium	2 ~10	Yes	Yes	Hard

Criteria for CO₂ sources selection

1)Technical feasibility and maturity principle

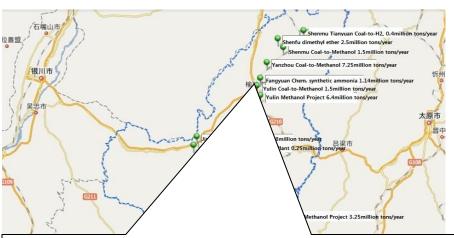
It means that the capture technology is engineering available, and the mature technology should be given priority to reduce the risk and uncertainty of the project.

2) The energy penalty and cost minimization principle high purity CO_2 sources to reduce capture cost and energy penalty.

Target Region: Shaanxi province

•Coal reserve and production are both large 168.5 Gt, 16% of the total reserve

•CO₂ emissions in Shaanxi are huge around 75Mt/a(2006 data)


 Many sources with high CO₂ purity Coal chemical industry is developed (E.g., methanol plant, DME plant, NH₃ plant)

 With local government owned oil fields suitable for CO₂ EOR Yanchang oil field Changqing oil field

With coal fields suitable for ECBM
 Shenfu coal fields: biggest in China

• Under reduction pressure, local government wishes to CCS demo

High-purity CO₂ sources in Shaanxi

- Total CO₂ emission scale: 61.1Mt/y
- Most sources are located in Yulin city
- 10 methanol plants with over 99% purity CO₂ and 42.5Mt/y emissions
- 7 ammonia plants with over 99% purity

sions

Examples:

Methanol production projects in Yulinover 99% purity
ionsCapacity: 0.6 Mt per year99% purity CO2Coal consumption: 1.8 Mt per year99% purity CO2CO2 emissions: 4.0 Mt per year8Water consumption: 6.0 Mt per year1000 Mt per year

CO₂ transportation options in Shaanxi

- Road flexible, using existing road infrastructure
- Rail flexible, using existing road infrastructure
- Pipeline more cost-effective, suitable for larger volumes (>2MT/yr), full-scale demonstration projects
- Road and rail most suitable in early stages of CCUS development
- Pipelines most suitable when CCUS reaches larger scale

Recommendations for CO₂ transportation

Transportation method	Preferable scale	transportation cost
Pipeline	Large scale, >2Mt/year	~1\$/t/100km
Railway/Road tanks	Small scale	6~17\$/ t /100km
Ship	Median-large	0.6~5\$/ t /100km

EOR potential in Shaanxi — Yanchang oil field

- Yanchang oil field
 - 2010 production **12 million ton** oil
 - Ownership: Shaanxi provincial government
 - Estimated indicative storage capacity:
 45~88Mt CO₂
 - EOR plans: promote and apply water flood recovery, actively research and develop CO₂-EOR

Oil exploration spots in Yanchang oil filed (23 spots)

Plant name	Plant type	Location	Scale
· · · · ·	Attatched to Yanch	ang Petroleum	
Yanchang Petroleum	Oil exploitation	Yanan	Oil production
Zichang oil exploitation		Zichang	~400,000t/year in 2006
plant		country	
Yanchang Petroleum	Oil exploitation	Yulin	Oil production
Dingbian oil exploitation		Dingbian	~900,000t/year in 2007
plant		Country	
Yanchang Petroleum	Oil exploitation	Yulin	Oil production
Jingbian oil exploitation		Jingbian	~780,000t/year in 2009
plant		Country	
Yanchang Petroleum Wuqi	Oil exploitation	Yanan Baotao	Oil production
oil exploitation plant		district	~1400,000t/year
Yanchang Petroleum	Oil exploitation	Yanan	Oil production
Wangjiachuan oil		Yanchang	~460,000t/year in 2008
exploitation plant		country	
Yanchang Petroleum	Oil exploitation	Yanan Baotao	Oil production
Ganguyi oil exploitation		district	~260,000t/year in 2008
plant			
Yanchang Petroleum	Oil exploitation	Yanan Zhidan	Oil production
Yongning oil exploitation		country	~1260,000t/year in 200
plant			
Yanchang Petroleum Xiqu	Oil exploitation	Yanan Zhidan	Oil production
oil exploitation plant		country	~1000,000t/year

Oil exploration spots in Yanchang oil filed (23 spots)

Yanchang Petroleum	Oil exploitation	Yanan Ansai	Oil production
Xingxichuan oil exploitation		country	~650,000t/year
plant			
Yanchang Petroleum Nanniwan	Oil exploitation	Yanan Baotao	Oil production
oil exploitation plant		district	~500,000t/year
Yanchang Petroleum Chuankou	Oil exploitation	Yanan Baotao	Oil production
oil exploitation plant		district	~500,000t/year
Yanchang Petroleum Xiasiwan	Oil exploitation	Yanan Ganquan	Oil production
oil exploitation plant		country	~420,000t/year
Yanchang Petroleum Wayaobao	Oil exploitation	Yanan Zichang	Oil production
oil exploitation plant	-	country	~350,000t/year
Yanchang Petroleum Qilicun oil	Oil exploitation	Yanan Yanchang	Oil production
exploitation plant	-	country	~300,000t/year
Yanchang Petroleum Zibei oil	Oil exploitation	Yanan Zichang	Oil production
exploitation plant	-	country	-
Yanchang Petroleum Hengshan	Oil exploitation	Yanan Hengshan	Oil production
oil exploitation plant	-	country	~140,000t/year
Yanchang Petroleum	Oil exploitation	Yanan Yanchuan	Oil production
Qingpingchuan oil exploitation	-	country	~100,000t/year
plant			-
Yanchang Petroleum Panlong oil	Oil exploitation	Yanan Baota	Oil production
exploitation plant	-	district	~140,000t/year
Yanchang Petroleum Zhiluo oil	Oil exploitation	Yanan Fu	Oil production
exploitation plant	-	country	~70,000t/year
Yanchang Petroleum Nangu oil	Oil exploitation	-	Oil production
exploitation plant	-		~120,000t/year
Yanchang Petroleum Zizhou oil	Oil exploitation	Yulin Zizhou	Oil production
exploitation plant	-	country	~40,000t/year
Yanchang Petroleum Yingwang	Oil exploitation	Yanan Yichuan	-
oil exploitation plant	-	country	

EOR potential in Shaanxi — Changqing oil field

- Changqing oil field
 - Part of Shaanxi-Gansu-Ningxia basin
 - Proven geological oil reserves of about 336 million tons, controlled reserves of about 394 million tons and prognostic reserves of about 533 million tons since 1999.
 - Ownership: PetroChina
 - Indicative storage capacity: 41~80Mt CO2
 - EOR plans: currently promote and apply water flood recovery, actively research and develop CO₂-EOR

Oil exploration spots in Changqing oil filed (3 spots)

Plant name	Plant type	Location	Scale							
	Attatched to Changqing Petroleum									
Changqing Petroleum 3th oil exploitation plant	Oil exploitation	Yanan Wuqi country	-							
Changqing Petroleum 4th oil exploitation plant	Oil exploitation	Yulin Changqing industry base	-							
Changqing Petroleum 6th oil exploitation plant	Oil exploitation	Yulin Dingbian country	-							

Criteria for CCUS project selection

Selection Criteria	Evaluation Aspects
1 Technical feasibility (necessary)	Technical maturity capture/transportation/storage technology
2 Match of source and sink(necessary)	CO2 emission scale of sources Sequestration method and volume
3 Economic factor	Capture, transportation and sequestration cost Utilization value
4 Energy penalty	Capture, transportation and sequestration energy penalty
5 Environmental factor	Contribution of carbon emission reduction Impact on local water resources Impact on the emission amount of particles Other impact on environment
6 Transportation factor	Transportation infrastructure/Terrain/Distance
7 Policy factor(necessary)	Local policy support for CCS
8 Social factor	Public acceptance
9 Security factor(necessary)	CO2 transportation security CO2 leakage
10 Demonstration effect	Demonstration site/Demonstration scale
11 Complexity of project organization	Enterprise properties of the CO2 source Properties of the Enterprise in charge of CO2 transportation Properties of the Enterprise in charge of CO2 sequestration

Criteria for CCUS project selection -Scoring mechanism for unnecessary factors

	0	1	2	3	4	5
Capture cost						
Transportation cost						
Sequestration cost						
Capture energy consumption						
Transportation energy consumption						
Sequestration energy consumption						
Traffic conditions						
Contribution to CO ₂ emission						
reduction						
Impact to local water resources						
Difficulty level in deploying the						
projects						

Notice: mark an 'X' in the box. 0-very low, 1-low, 2-middle, 3-high, 4-very high, 5-extremely high

Recommended non-power CCUS projects in Shaanxi province

Yanchang Petroleum Jingbian oil exploitation plant

Cas

Cas

Cas

Cas

Unspire Varantylethanolo.8mt/y bangging Settoleum 4th oil exploitation plant Changqing Petroleum 4th oil exploitation plant Changqing oil exploitation spot

Yanchang YananMethanol \$25mt/y Yanchang methanol.pla illion /ear

illion

FuxianMethanol 6.81/5

Fuxian methanol pla

million vear

50/4: a= parti
 20/2°CnStSpot Image
 20/2°CnStSpot Image</lit

36 41 30.98" 北 108 31 23.47" 东 海拔 1513 米

Coogle earth vear

视角海拔高度 998.60 公里 🔘

Case 1 Yanchang oil field methanol plant – Yanchang oil field

- Capture and compression characteristics and cost: ~12Mpa 99.9% CO₂ 15~25\$/t
- Emission volume 1.14 Mt/yr
- Distance from injection site: 160 km
- Transportation options and characteristics: pipeline
- Utilization characteristics and cost: EOR, injection cost ~6\$/t, net cost -16~-80\$/t
- Key aspects from applying selection criteria: short distance to the oil exploitation field, high purity CO₂, owned by Yanchang oil petroleum

Case 2 Yanan Fuxian methanol plant – Yanchang oil field

- Capture and compression characteristics and cost: ~15MPa 99.9% CO₂ 15~25\$/t
- Emission volume 6.8 Mt/yr
- Distance from injection site: 170 km
- Transportation options and characteristics:
 pipeline
- Utilization characteristics and cost: EOR, injection cost ~6\$/t, net cost -16~-80\$/t
- Key aspects from applying selection criteria: high purity CO₂, near to oil exploitation field, owned by Yanchang oil petroleum

Case 3 Changqing oil field methanol plant – Changqing oil field

- Capture and compression characteristics and cost: 2~4Mpa 99.9% CO₂ 15~25\$/t
- Emission volume 0.25 Mt/yr
- Distance from injection site: 40 km
- Transportation options and characteristics: road
- Utilization characteristics and cost: EOR, injection cost ~6\$/t, net cost -16~-80\$/t
- Key aspects from applying selection criteria: short distance, high purity CO₂, owned by Changqing oil petroleum

Case 4 Jingbian methanol plant – Changqing oil field

- Capture and compression characteristics and cost: ~15MPa 99.9% CO₂ 15~25\$/t
- Emission volume 6.8 Mt/yr
- Distance from injection site: 40 km
- Transportation options and characteristics: pipeline
- Utilization characteristics and cost: EOR, injection cost ~6\$/t, net cost -16~-80\$/t
- Key aspects from applying selection criteria: short distance, high purity CO₂

Cost-Benefit Analysis assumptions

- 1. Pipeline transportation, 160km
- 2. Pipeline transportation, 170km
- 3. Highway tanks transportation, 40km.
- 4. Pipeline transportation, 40km.
- 5. Excluding EOR benefit : data from IPCC special report on carbon capture and storage.
- 6. Excluding EOR benefit.
- Including the benefit from oil production. Based on IPCC report, the net EOR cost is around -16\$/t assuming the oil price is 20\$/t. In this report, the oil price is assumed to range from 20\$/t to 100\$/t.
- 8. CO_2 is captured from traditional coal-fired power plant.
- 9. Pipeline transportation, 300km.

Cost-Benefit Analysis Shaanxi CCUS projects

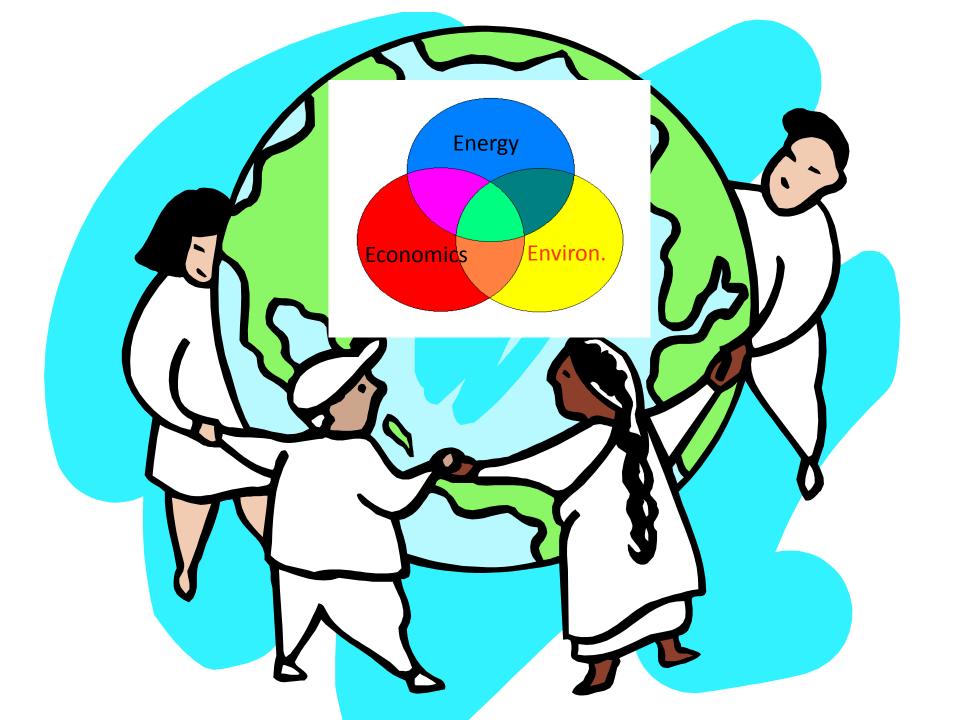
	CO₂ capture cost	Transportat ion cost	Injection cost ⁵	Total CCS cost ⁶	Total CCS cost after considerin g the oil benefit ⁷
Case 1	15~20\$/t	1.5\$/t ¹	6\$/t	22.5~27.5\$/t	-50.5~5.5\$/t
Case 2	15~20\$/t	1.7\$/t ²	6\$/t	24~29\$/t	-46~7\$/t
Case 3	15~20\$/t	3.2\$/t ³	6\$/t	29~34\$/t	-41~12\$/t
Case 4	15~20\$/t	0.7\$/t ⁴	6\$/t	24~29\$/t	-46~7\$/t
Capture from power plant	35~50\$/t ⁸	3\$/t ⁹	6\$/t	44~59\$/t	-20~37\$/t

Cost effective for the four cases

National Support on CCUS in Yanchang Petroleum

- 1. "Research for the supporting technologies of CO_2 -EOR in Yanchang Oil field" in 2010;
- "Demonstration of CCS and EOR technologies: started in 2012; Target: 50,000 tons per year of CO₂ capture facility, build 10-15 wells for CO2-EOR demonstration, over 40,000 tons of CO2 per year will be stored
- "key CCUS technologies in coal fired power plants—CO₂ storage key technologies" —863 project stared in 2012
- Target: build the safety monitoring system, indentify the leakage risks and paths, build the CO₂-EOR demonstration basis

Development of CCUS in Yanchang Petroleum — 50,000 tons per year of CO₂ liquefaction and purification facility in Yulin



CO2 liquification and purification project

Yunlin Coal Chemical Industry of Yanchang Petrolemum group has built 50000 tons per year CO2 separation and purification facility (**Rectisol** process, food class purity: **98.5%**)

Conclusions

- The energy penalty and cost for capturing CO₂ from nonpower sector is much lower than that of power plant, and even can gain profit in some cases combined with EoR;
- Shaanxi Province may become the focused region for deploying early CCS demonstration projects in China due to it's resources characteristics;
- Detailed feasibility study will promote the progress of CCS demonstration in Shaanxi Province.

Contact Information

Lin Gao | Associate Professor of Institute of Engineering Thermophysics, CAS E-mail: gaolin@iet.cn Sheng Li | Assistant Professor of Institute of Engineering Thermophysics, CAS . E-mail: lisheng@iet.cn

Ruimin Gao | President of Research Institute of Shaanxi Yanchang Petroleum(Group) Co.,LTD. E-mail: <u>vcsygrm@126.com</u>

Shaojing Jiang | Director of Research Institute of Shaanxi Yanchang Petroleum(Group) Co.,LTD. E-mail: jshj7010@sina.com

Wang Hong | Engineer of Research Institute of Shaanxi Yanchang Petroleum(Group) Co.,LTD. E-mail: raskay@163.com