Technology Centre Mongstad

Technology Manager Olav Falk-Pedersen

– catching our future
TCM is the world’s largest facility for testing and improving CO2 capture.

Knowledge gained will prepare the ground for CO2 capture initiatives to combat climate change.
Ambitions

• Test, verify and demonstrate CO2 capture technology owned and marketed by vendors
• Reduce cost, technical, environmental and financial risks
• Encourage the development of market for CO2 capture technology
• Aim at international deployment
International Co-operation

GASSNOVA 75.12%

Statoil 20%

2.44%

2.44%

Other potential partners to be invited

– catching our future
TCMs organization

- Company Meeting
- Technology Committee (Partners reps.)
 - Managing Director
 - Technology Manager
 - Operations Manager
 - TCM Project Manager
 - Statoil
How does CO₂ capture work?

- Cooled flue gas enters absorption tower.
- Water wash
- Flue gas conditioning / Cooling
- Flue gas without CO₂
- Solvent without CO₂
- Solvent with CO₂
- CO₂ is stripped off the solvent by adding heat.
- Recycling of solvent to absorption tower.
- The hot solvent without CO₂ heats up the cool solvent with CO₂ in a heat exchanger.

- Gas power plant / Refinery

- – catching our future
Two flue gas sources

Combined Heat & Power plant (CHP)

Max 5% of total flow
From one stack

Pre-treatment

Capture processes
(amine or chilled ammonia)

28 – 56 000 Sm³/hr
3.5 – 9 mole% CO₂
14.4 % O₂
5 ppmv NOₓ
≈ 0 ppmv SOₓ

Cracker (RFCC)

Max 11% of total flow

Pre-treatment

Capture processes
(amine or chilled ammonia)

22 – 50 000 Sm³/hr
12.9 mole% CO₂
4.2 % O₂
183 ppmv NOₓ
≈ 30 ppmv SOₓ

22 – 25 000 tonnes CO₂/yr

Recycle

74 – 82 000 tonnes CO₂/yr

Relevant for a number of industrial processes including gas and coal fired power plants.
– catching our future
Test Strategy – Overall Concept

Combined Heat & Power plant (CHP)*

Cracker (RFCC)

Amine

Mobile Test Unit

Chilled Ammonia

Total capacity 100 ktonnes CO₂ per year

* CHP design capacity of 280MW electricity and 360MW heat.
Mongstad Refinery

EVM Power plant

TCM

Project office rig

Aerial photo 29.11.2010

– catching our future
Key figures for TCM

<table>
<thead>
<tr>
<th>Total TCM</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural steel</td>
<td>tons</td>
</tr>
<tr>
<td></td>
<td>2,917</td>
</tr>
<tr>
<td>Piping</td>
<td>tons</td>
</tr>
<tr>
<td></td>
<td>1,087</td>
</tr>
<tr>
<td>Electrical cables</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>234,400</td>
</tr>
<tr>
<td>Instrument cables</td>
<td>m</td>
</tr>
<tr>
<td></td>
<td>208,000</td>
</tr>
<tr>
<td>Instruments</td>
<td>no's</td>
</tr>
<tr>
<td></td>
<td>3,904</td>
</tr>
<tr>
<td>Equipment</td>
<td>tons</td>
</tr>
<tr>
<td></td>
<td>958</td>
</tr>
</tbody>
</table>
Prefabrication

PAU assembly at Aker Stord

– catching our future
Fabrication of equipment

– catching our future
Piperacks installed

– catching our future
Seawater intake

— catching our future
Mechanical installations

– catching our future
TCM organisation build up

- Company Meeting (4+4)
- Technology Committee (4+4 Partners reps.)
- Managing Director (73)
- Financial Manager (2)
- QR/HMS Manager (3)
- Communication Manager (1)
- Admin. Co-ordinator (1)
- Technology Manager (8)
- Operations Manager (57)

- catching our future
Knowledge sharing

- Co-operate with research organisations and other CCS projects
- Participate in CCS conferences and give papers
- Keep outside world updated on status through website
- Good communication with media and NGO’s
- Subject to vendor confidentiality agreements
Our Objectives

- Improve and verify CO2 capture technology for large scale
- Become a globally recognized centre of competence on CO2 capture