Coal Conversion and CO₂ Utilization

China Coal Research Institute 2011.09

Agenda

- □ Coal Conversion Technologies and CO₂ Emissions
- **□** Approaches for CO2 Emissions Reduction and
 - **Utilization through Coal Conversion**
- **□** Demonstration Projects of Coal Conversion and CO₂
 - **Utilization demonstration projects**

I. Coal Conversion Technology and CO2 Emissions

Routes of Coal Conversion

$oldsymbol{(1)}$ Ammonia and Urea Production from Coal

- The comprehensive coal consumption in ammonia production is 1.3~1.7 tons of standard coal equivalent per ton of NH₃, a level of below 1.5tce/tNH₃ can be achieved if technology permits.
- Volume of carbon dioxide emissions is about $2 \sim 3t/tNH_{3}$.

(2) Methanol Production from Coal

- The comprehensive coal consumption in methanol production is 1.42~ 1.59 tons of standard coal equivalent per ton of methanol. Energy conversion efficiency can reach 43~48%, or even 50% in some large projects.
- CO₂ emissions are $2.37 \sim 3.52$ tons of carbon dioxide per ton of methanol($0.119 \sim 0.176$ t/GJ), among which $0.079 \sim 0.117$ tons are discharged in the processing and $0.040 \sim 0.059$ tons in the public process.

(3) Dimethyl Ether Production from Coal

- The comprehensive coal consumption here is $2.18\sim2.40$ tons of standard coal equivalent per ton of dimethyl ether. Energy conversion efficiency can reach $41\sim45\%$.
- CO₂ emissions are 3.8~5.48tons of carbon dioxide per ton of dimethyl ether (or, $0.133\sim0.190t/GJ$), among which $0.090\sim0.129tons$ are discharged in the processing and $0.043\sim0.061tons$ in the public process.

(4) Olefin Production from Coal

- The comprehensive coal consumption is 4.28~5.20 tons of standard coal equivalent per ton of olefin.
- CO₂ emissions are $6.40\sim9.15$ tons of carbon dioxide per ton of olefin, among which $4.27\sim6.10$ tons are discharged in the processing and $2.13\sim3.05$ tons in the public process.

(5) Direct Liquefaction of Coal

- The comprehensive coal consumption is $2.57 \sim 3.01$ tons of standard coal equivalent per ton of coal in direct liquefaction of coal; energy conversion efficiency stands at $50 \sim 58\%$.
- CO₂ emissions are 4.14 \sim 6.85tons per ton of oil product (or, 0.096 \sim 0.157t/GJ), among which 0.067 \sim 0.110tons are discharged in the processing and 0.029 \sim 0.047 tons in the public process.

(6) Indirect Liquefaction of Coal

- The comprehensive coal consumption is 3.24~3.87 tons of standard coal equivalent per ton of coal in indirect liquefaction of coal; energy conversion efficiency stands at 38~43%.
- CO₂ emissions are $5.52 \sim 8.49$ tons per ton of oil product (or, $0.128 \sim 0.197$ t/GJ), among which $0.085 \sim 0.131$ tons are discharged in the processing and $0.043 \sim 0.066$ tons in the public process.

(7) Natural Gas from Coal

- The comprehensive coal consumption is $1.97\sim2.25$ tons of standard coal equivalent per cubic kilometers of natural gas; energy conversion efficiency stands at $55\sim63\%$.
- CO₂ emissions are 3.2 \sim 5 tons per cubic kilometers of natural gas (or, 0.086 \sim 0.145t/GJ), among 0.057 \sim 0.097 tons are discharged in the processing and 0.029 \sim 0.058 tons in the public process. \uparrow CO₂ (processing)

(8) Hydrogen Production from Coal

- The comprehensive coal consumption is $0.64\sim0.79$ tons of standard coal equivalent per cubic kilometers of hydrogen; energy conversion efficiency stands at $55\sim68\%$.
- CO₂ emissions are $1.02\sim1.82$ tons per cubic kilometers of hydrogen (or, $0.078\sim0.139t/GJ$),, among $0.057\sim0.097$ tons are discharged in the processing and $0.029\sim0.058$ tons in the public process. $\triangle CO_2$ (Processing)

Energy Efficiencies of Conversion Technologies, %

Carbon Dioxide Emissions of Conversion Technologies, tCO₂/GJ

Carbon Dioxide Emissions of Conversion Technologies, tCO₂/t coal

II. Approaches for CO₂ Emissions Reduction and Utilization through Coal Conversion

□ Approaches for CO₂ Emissions Reduction

- **Choosing the right direction for product development**
- Improving technology
 - Raising coal conversion efficiency
 - Raising the efficiency of catalysts
 - Improving the efficiency of pumps
 - Recycling waste heat
 - Rationalizing the process flow
- Developing coal poly-generation technology

□ Approaches for CO₂ Utilization

- Producing chemical products as raw materials
 - Since CO_2 produced in the coal chemical processing are of high concentration and high pressure, it's helpful for capture and utilization; Priority can be given to deploying capture and storage technologies in the coal chemical industry and IGCC power plants.
 - Producing urea while making coal-ammonia; emissions can be decreased to 0.71t/t.
 - Producing chemical products such as K₂CO₃, acetic acid
 - Underground fire extinguishing
- Raising oil-gas recovery
 - □ EOR, ECBM

III. Demonstration Projects of CO₂ Utilization in Coal Conversion

□Possibility of being used for EOR

Thank you!