

A policy strategy for carbon capture and storage

18 September 2011

Juho Lipponen Head of Unit, Carbon Capture and Storage International Energy Agency

POLICY IS CRITICAL FOR CCS

CARBON CAPTURE AND STORAGE

iea

POLICY IS CRITICAL FOR CCS

- 1. Enabling CCS as part of energy portfolio
- 2. Making CCS a legal activity & clarifying responsibilities
- CARBON CAPTURE AND STORAGE
- 3. Ensuring safety and environmental viability of operations
- 4. Providing incentives for demonstration and deployment
 - Business models & financing of projects
- 5. Contributing to public acceptance

Significant amount of capital needs to be attracted

To meet the IEA Roadmap ambitions almost \$5 trillion will need to be invested in CCS installations

Notes: excludes transportation and storage investment; includes investment in both base plant and capture

The economic characteristics of CCS technology are expected to fundamentally change

The cost of most applications of CCS is currently significantly above carbon prices (where they exist); by 2050 it is expected that this will reverse

The evolution of policy largely reflects a change in the relative balance of market failures holding back CCS investment

The relative importance of different market failures will change over time

Policy objective Example policies Importance over time

	Emissions reduction	carbon tax, emissions trading	
URE GE	Learning	Feed-in tariff	
	Access to capital market	provision of debt, equity, insurance	
	Infrastructure	regulation	

© OECD/IEA 2010

iea

CARBON CAP AND STORA

Multiple policy objectives justify a suite of interventions

- as CCS development is affected by multiple market failures, multiple support policies can be justified
- a principle of good policy design is that no more than one policy instrument should be used to tackle each market failure
- also need to take careful account of interactions between policies, for example
 - in the short term, mechanisms to support CCS in installations which are covered by an emissions trading scheme (ETS) will generate no additional reduction in emissions
 - however, CCS support mechanisms do generate learning benefits
 - which in the medium/longer term can be taken into account by adjusting the ETS cap

Policy gateways

- expected change in the characteristics of CCS, and associated focus of incentive policy, creates a challenge for policy-making
 - on the one hand, want to be able to adapt and modify policy as technology changes or new information comes to light
 - on the other hand, the (perception of) changing policy may damage investment

'policy gateways' might help overcome this challengegateways would consist of three components

- policies that will be used in each stage
- criteria that will define when or if policy will move to the next stage
- an outline of the reaction if gateways are missed

Protects government from overstretching resources, from imposing poor value for money, and lowers policy risk for investors

An illustrative example of policy gateways in action

An example of a policy framework enhancing credibility and effectiveness

Bioenergy and CCS can reduce atmospheric concentrations of CO₂

- This should be reflected in incentive policy
- BECCS is the use of CCS to capture emissions from biomass processing or combustion
- it has the potential to reduce atmospheric concentrations of CO₂
- CARBON CAPTURE AND STORAGE
- CO₂ sequestered from air as biomass grows is not returned to atmosphere
- may well be needed for climate stabilisation

Stylised comparison of conventional CCS and BECCS lifecycle emissions

Process	CCS	BECCS
Biological sequestration		-1
Combustion	+1	+1
Storage	-1	-1
Lifecycle emissions	0	» <u>-1</u> -
Should be reflected as extra incentive	a	

CARB

As the technology matures, so the characteristics of policies to incentivise CCS may change

Incentive policy might evolve along four dimensions

		Early stage	As technology matures	Late stage
	1	Supporting capital deployment and operations	Greater willingness to invest by capital markets	Incentivising operations
ON CAPTURE D STORAGE	2	Costs and risks shared by public and private sector	Reduced learning spill- overs and better knowledge of risks	Costs and risks mainly borne by private sector
	3	Subsidising abatement	Polluter pays	Penalising emissions
	4	CCS-specific support	Achieving least-cost abatement	Technology-agnostic policy

CARBON CAPTURE

AND STORAGE

TOWARDS COMPREHENSIVE NATIONAL POLICY

- 1. Enact decisions to combat climate change
- 2. Analyse the role and enable CCS as part of energy portfolio
- 3. Enact laws & regulations to govern safety of operations & to clarify responsibilities across the chain (make CCS legal)
- 4. Provide incentives for demonstration and deployment (basis of business models)
- 5. Ensure research as necessary
- 6. Enact strategy to ensure public acceptance

CARBON CAPTURE AND STORAGE

Thank you

juho.lipponen@iea.org

www.iea.org/ccs