Investment risks in a decarbonising electricity market

Dr William Blyth, Oxford Energy Associates

International Energy Agency Emissions Trading Workshop

Paris, September 2013
Investment challenges

• Uncertain carbon prices lead to investment risk
 – Demand, fuel prices, policy, technology cost & performance

• During decarbonisation, electricity price may drop
 – Increasing penetration of low marginal cost generation plant creates downward pressure on electricity prices

• Unpromising investment conditions
 – Drop in electricity demand – overcapacity in UK, EU
 – Financial markets under pressure, banks & utilities attempting to de-leverage
 – Political focus on high energy costs for consumers
UK policy response: Electricity market reform

- Carbon price floor

<table>
<thead>
<tr>
<th></th>
<th>Confirmed</th>
<th>Indicative</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013-14</td>
<td>4.94</td>
<td>4.94</td>
</tr>
<tr>
<td>2015-16</td>
<td>18.08</td>
<td>18.08</td>
</tr>
<tr>
<td>2016-17</td>
<td>21.20</td>
<td>21.20</td>
</tr>
<tr>
<td>2017-18</td>
<td>24.62</td>
<td>24.62</td>
</tr>
</tbody>
</table>

- Feed-in tariffs for nuclear & renewables
 - Contracts to pay the difference between an agreed strike price and the market price of electricity

- Capacity mechanism
 - Payment to plant (& flexible demand) for being available
 - Move away from energy-only markets, government decides how much capacity on system

- Emissions performance standard
 - 450g/kWh, regulatory back-stop to prevent new unabated coal
Low-C generation support levels in UK

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Conversion Technologies (with or without CHP)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic Digestion (with or without CHP)</td>
<td>155</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>Biomass Conversion</td>
<td>105</td>
<td>105</td>
<td>105</td>
</tr>
<tr>
<td>Dedicated Biomass (with CHP)</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Energy from Waste (with CHP)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Geothermal (with or without CHP)</td>
<td>125</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Hydro (with or without CHP)</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Landfill Gas</td>
<td>65</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>Offshore Wind</td>
<td>155</td>
<td>155</td>
<td>150</td>
</tr>
<tr>
<td>Onshore Wind</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Sewage Gas</td>
<td>85</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>Large Solar Photo-Voltaic</td>
<td>125</td>
<td>125</td>
<td>120</td>
</tr>
<tr>
<td>Tidal Stream</td>
<td>305</td>
<td>305</td>
<td>305</td>
</tr>
<tr>
<td>Wave</td>
<td>305</td>
<td>305</td>
<td>305</td>
</tr>
</tbody>
</table>
Modelling Exercise

• Model development undertaken for EPRI
• Project aims:
 – Quantify investment risks through stochastic modelling, including impact of structural changes during decarbonisation
 – Look at system-wide impacts of investment risk
 – Take account for imperfect market pricing (ability of companies to raise prices above SRMC)
 – Identify likely trajectories for policy support
Model Structure

EU long-term expansion planning model (stochastic)

UK long-term expansion planning model (stochastic)

Market structure + real options analysis – long-run price risk

UK agent-based model of price formation

Price mark-up in imperfect markets

Stochastic Inputs:
• Carbon constraints
• Fuel prices
• Technology costs & performance
• Demand profiles
• Etc.

UK short-run electricity market price model (stochastic)

Long-run + short-run risk

Short-run electricity price risk

C-price

C-price

C-price
1. LONG-RUN OPTIMISATION MODEL
Structure of electricity system is stochastic

EU mix under ‘central’ carbon cap

Projection year

Gas price: annual escalator
Testing climate policy approaches
“A rising tide lifts all boats”

- Low-carbon tech A
- Low-carbon tech B

Generation costs reduce over time due to learning and economies of scale

‘cost gap’ shrinks over time, implying reducing need for policy support

Market price for electricity + carbon rises over time

€/MWh

Time
Gap between cost of generation and system short-run marginal cost

Weak Cap (1.74% pa) Strong Cap (3.5% pa) Full Decarbonisation

Gas

Nuclear

Offshore Wind
2. SHORT-RUN PRICE RISK MODEL
Impact of low-carbon generation on prices & investment returns

Coverage ratio = net operational earnings / financing costs

Replacing coal with wind

Replacing coal with nuclear

Successive GW of coal replaced with low-carbon sources on an energy like-for-like basis

Investment criterion used in model: 95% chance that coverage ratio is above 1.2
COMBINING SHORT-RUN AND LONG-RUN RISK
Estimating total investment risk

<table>
<thead>
<tr>
<th>Long-run risk premium</th>
<th>+</th>
<th>Short-run risk premium</th>
<th>=</th>
<th>Total risk premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>(price mark-up required to overcome real option value)</td>
<td></td>
<td>(price mark-up required to overcome capital coverage investment hurdle)</td>
<td></td>
<td>(price mark-up required to overcome risk premia and incentivise immediate investment)</td>
</tr>
</tbody>
</table>

- Evolution of risk premia over time
- Impact on risk premia of a 5-year or 10-year investment hiatus
Price mark-ups required to overcome risk premia

CCGT
- LR+SR premium CCR>1.2
- LR+SR premium CCR>1
- LR risk premium
- Breakeven NPV=0

Nuclear
- LR+SR premium CCR>1.2
- LR+SR premium CCR>1
- LR risk premium
- Breakeven NPV=0

Offshore Wind
- LR+SR premium CCR>1.2
- LR+SR premium CCR>1
- LR risk premium
- Breakeven NPV=0
3. STRATEGIC PRICING MODEL
Companies may be able to recover risk premiums even in an over-supplied market.
Conclusions

- **Long-run risks are significant**
 - Fuel prices, policy risks, tech costs etc.
 - System structure uncertainty
 - Tight caps do not necessarily mean high returns for low-C plant

- **Short-run risks are significant**
 - System SRMC tends to fall in a decarbonising electricity market

- **Markets would probably adjust in short- to medium-term**
 - Investment hiatus increases incentive to invest due to increased carbon price and reduced reserve capacity
 - Market power could also result in sufficient profit margins

- **BUT, in the long run, market design needs to take account of deep structural changes from decarbonisation**
 - Capacity markets?
 - Other regulatory intervention?
Outstanding Policy Questions

• How will capacity markets and energy markets interact?
• How do well do market reference prices for CfDs work in a shrinking market?
• Are these markets more or less subject to market power?
• Who can finance these transitions?
Investment risks in a decarbonising electricity market

Dr William Blyth, Oxford Energy Associates

william.blyth@oxfordenergy.com

+44 1865 873 007