Investment risks in a decarbonising electricity market

Dr William Blyth, Oxford Energy Associates

International Energy Agency Emissions Trading Workshop

Paris, September 2013

Investment challenges

- Uncertain carbon prices lead to investment risk
 - Demand, fuel prices, policy, technology cost & performance
- During decarbonisation, electricity price may drop
 - Increasing penetration of low marginal cost generation plant creates downward pressure on electricity prices
- Unpromising investment conditions
 - Drop in electricity demand overcapacity in UK, EU
 - Financial markets under pressure, banks & utilities attempting to deleverage
 - Political focus on high energy costs for consumers

UK policy response: Electricity market reform

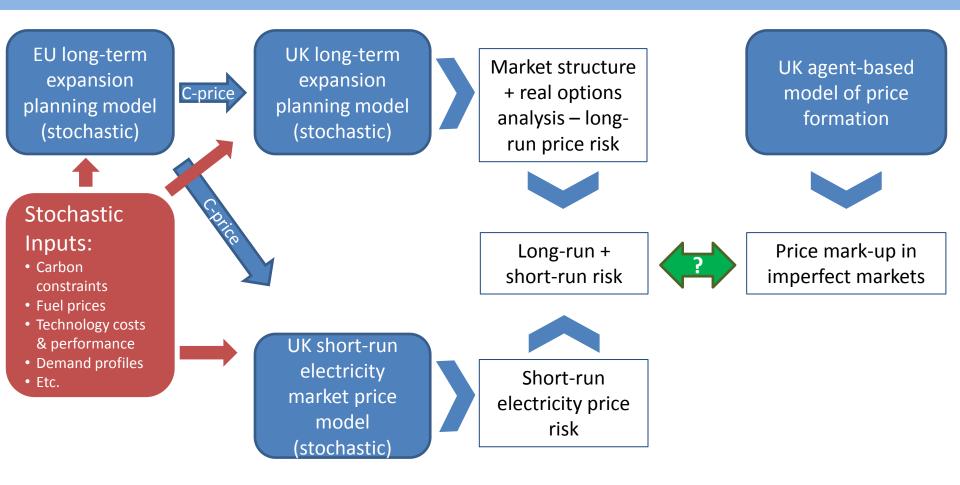
• Carbon price floor

	Confirmed	ł	Indicative			
	2013-14	2014-15	2015-16	2016-17	2017-18	
f/tCO_2	4.94	9.55	18.08	21.20	24.62	

- Feed-in tariffs for nuclear & renewables
 - Contracts to pay the difference between an agreed strike price and the market price of electricity
- Capacity mechanism
 - Payment to plant (& flexible demand) for being available
 - Move away from energy-only markets, government decides how much capacity on system
- Emissions performance standard
 - 450g/kWh, regulatory back-stop to prevent new unabated coal

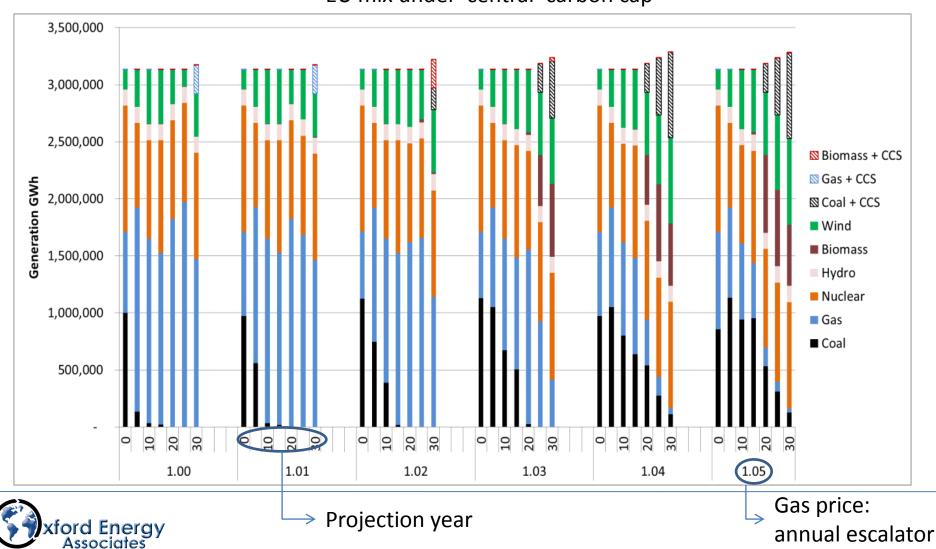
Low-C generation support levels in UK

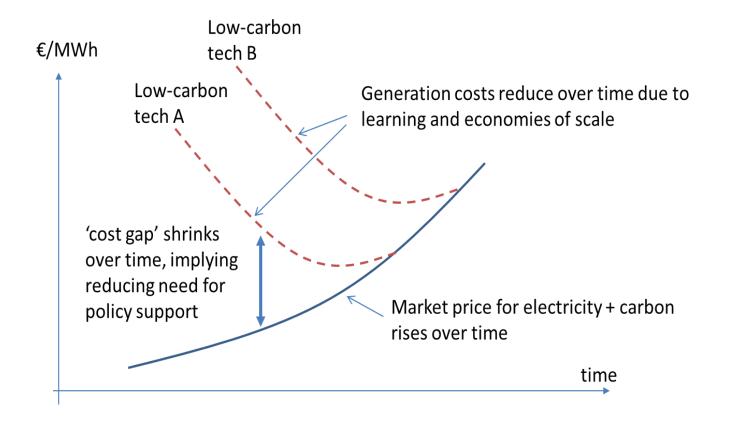
	Levy Control Framework – Upper Limits on Spend (£m) (2011/12 prices							
	2014/15 3,300	2015/16 4,300	2016/17 4,900	2017/18 5,600	2018/19 6,450	2019/20 7,000	2020/21 7,600	
Renewable Technology	Dra 2014/15	Potential 2020 Deployment Sensitivities (subject to VfM and cost reduction) (GW) ¹²						
Advanced Conversion Technologies ¹³ (with or without CHP ¹⁴)	155	155	150	140	135	c. 0.3		
Anaerobic Digestion (with or without CHP)	145	145	145	140	135	c. 0.2		
Biomass Conversion ¹⁵	105	105	105	105	105	1.2	- 4	
Dedicated Biomass (with CHP) 16 17	120	120	120	120	120	c. 0.3		
Energy from Waste (with CHP) ¹⁸	90	90	90	90	90	c. 0.5		
Geothermal (with or without CHP) ¹⁹	125	120	120	120	120	<	0.1	
Hydro ²⁰	95	95	95	95	95	с.	1.7	
Landfill Gas	65	65	65	65	65	c. 0.9		
Offshore Wind	155	155	150	140	135	8 - 16		
Onshore Wind	100	100	100	95	95	9 - 12		
Sewage Gas	85	85	85	85	85	с.	0.2	
Large Solar Photo-Voltaic	125	125	120	115	110	2.4 -	- 3.2	
Tidal Stream ²¹	305	305	305	305	305	c. 0.1		
Wave ²²	305	305	305	305	305			



Modelling Exercise

- Model development undertaken for EPRI
- Project aims:
 - Quantify investment risks through stochastic modelling, including impact of structural changes during decarbonisation
 - Look at system-wide impacts of investment risk
 - Take account for imperfect market pricing (ability of companies to raise prices above SRMC)
 - Identify likely trajectories for policy support

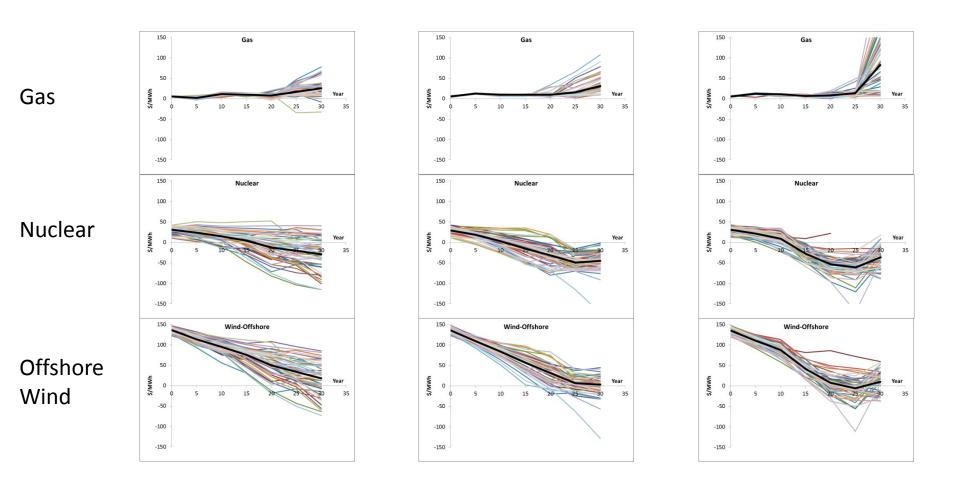

Model Structure


1. LONG-RUN OPTIMISATION MODEL

Structure of electricity system is stochastic

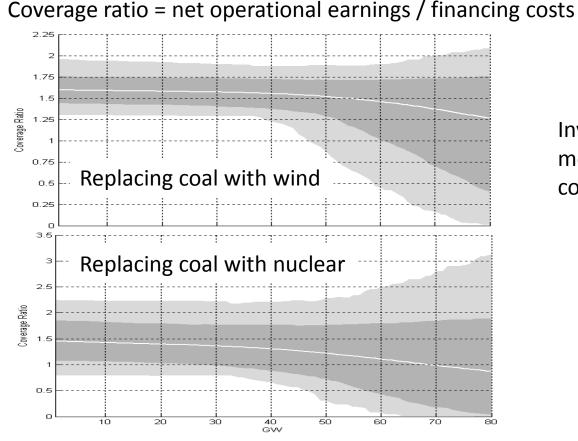
EU mix under 'central' carbon cap

Testing climate policy approaches "A rising tide lifts all boats"



Gap between cost of generation and system short-run marginal cost

Weak Cap (1.74% pa)


Strong Cap (3.5% pa)

Full Decarbonisation

2. SHORT-RUN PRICE RISK MODEL

Impact of low-carbon generation on prices & investment returns

Investment criterion used in model: 95% chance that coverage ratio is above 1.2

Successive GW of coal replaced with low-carbon sources on an energy like-for-like basis

COMBINING SHORT-RUN AND LONG-RUN RISK

Estimating total investment risk

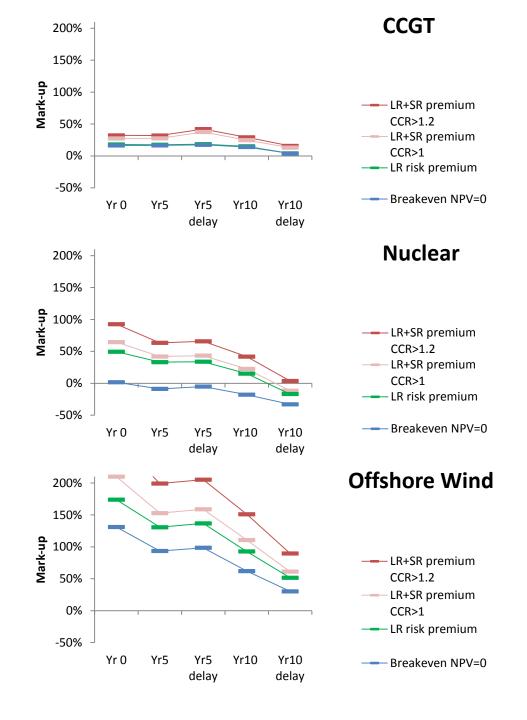
Long-run risk premium

(price mark-up required to overcome real option value)

Short-run risk premium

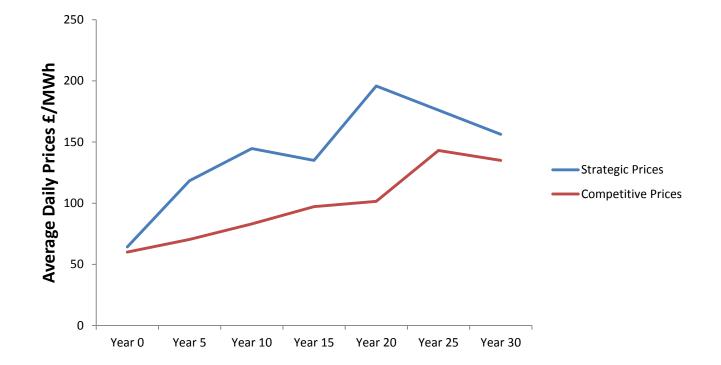
(price mark-up required to overcome capital coverage investment hurdle) Total risk premium

(price mark-up required to overcome risk premia and incentivise immediate investment)


• Evolution of risk premia over time

+

• Impact on risk premia of a 5-year or 10-year investment hiatus



Price markups required to overcome risk premia

3. STRATEGIC PRICING MODEL

Companies may be able to recover risk premiums even in an over-supplied market

Conclusions

Long-run risks are significant

- Fuel prices, policy risks, tech costs etc.
- System structure uncertainty
- Tight caps do not necessarily mean high returns for low-C plant

• Short-run risks are significant

- System SRMC tends to fall in a decarbonising electricity market
- Markets would probably adjust in short- to medium-term
 - Investment hiatus increases incentive to invest due to increased carbon price and reduced reserve capacity
 - Market power could also result in sufficient profit margins
- BUT, in the long run, market design needs to take account of deep structural changes from decarbonisation
 - Capacity markets?
 - Other regulatory intervention?

Outstanding Policy Questions

- How will capacity markets and energy markets interact?
- How do well do market reference prices for CfDs work in a shrinking market?
- Are these markets more or less subject to market power?
- Who can finance these transitions?

Investment risks in a decarbonising electricity market

Dr William Blyth, Oxford Energy Associates

william.blyth@oxfordenergy.com

+44 1865 873 007

