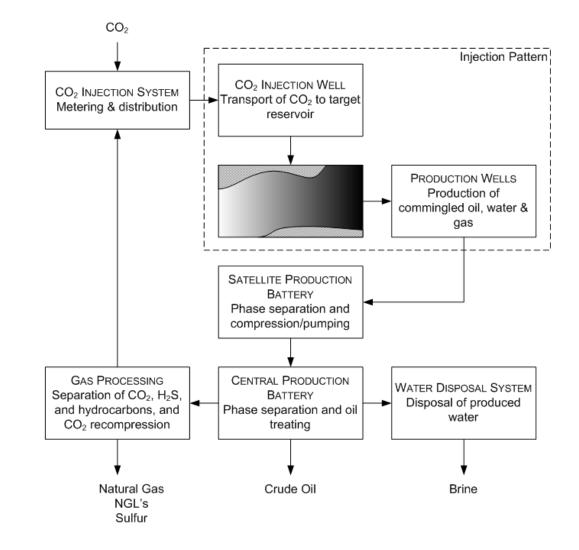


International Energy Agency

Potential for EOR to kick-start early projects CCS projects

Committee on Energy Research and Technology Sydney, 20 February 2012

Sean McCoy CCS Unit International Energy Agency


CARBON CAPTURE AND STORAGE

Three key messages

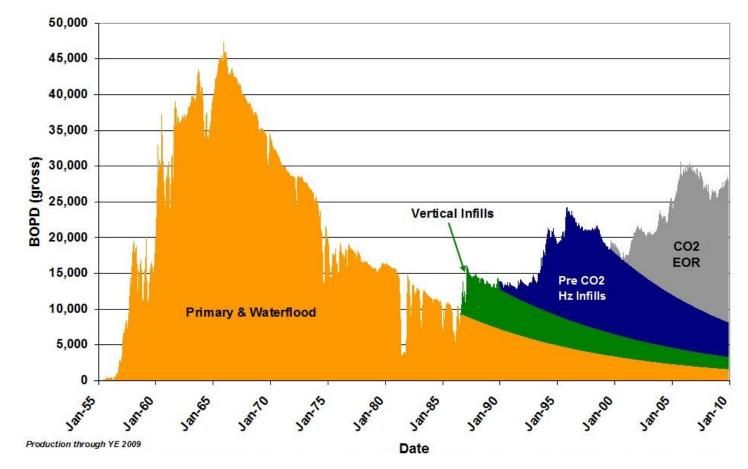
- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

CO₂-EOR: Using CO₂ to improve oil recovery

CARBON CAPTURE AND STORAGE

Source: McCoy, 2008

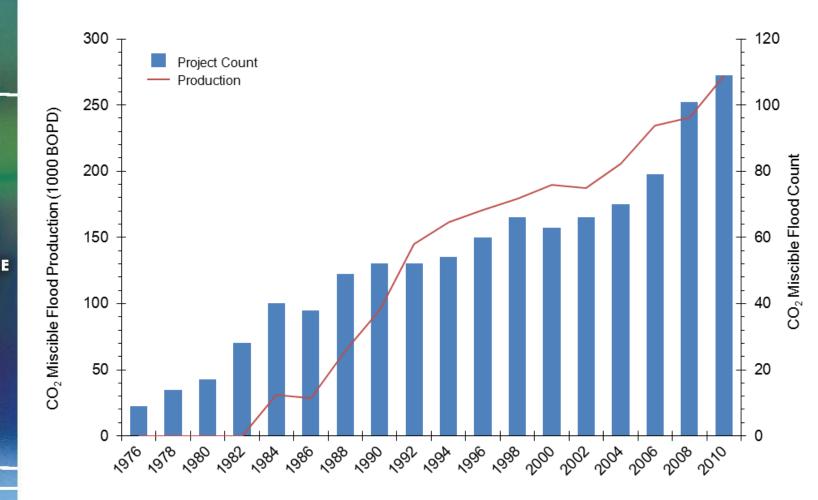
iea/


How does CO₂ improve oil recovery?

Two types of CO₂-EOR processes exist:

- Immiscible: injected CO₂ displaces oil from the reservoir and drives it towards production wells
- Miscible: injected CO₂ forms a single-phase mixture with the oil, effectively reducing the density and viscosity of the oil, improving ability of the oil to flow
- Miscible CO₂-EOR tends to recover more oil than immiscible, but uses less CO₂ per barrel
 - The type of CO₂-EOR process depends on reservoir pressure and oil composition (MMP)
- Majority of projects are miscible CO₂-EOR projects

Increased oil production from the Weyburn Unit under miscible CO₂-EOR

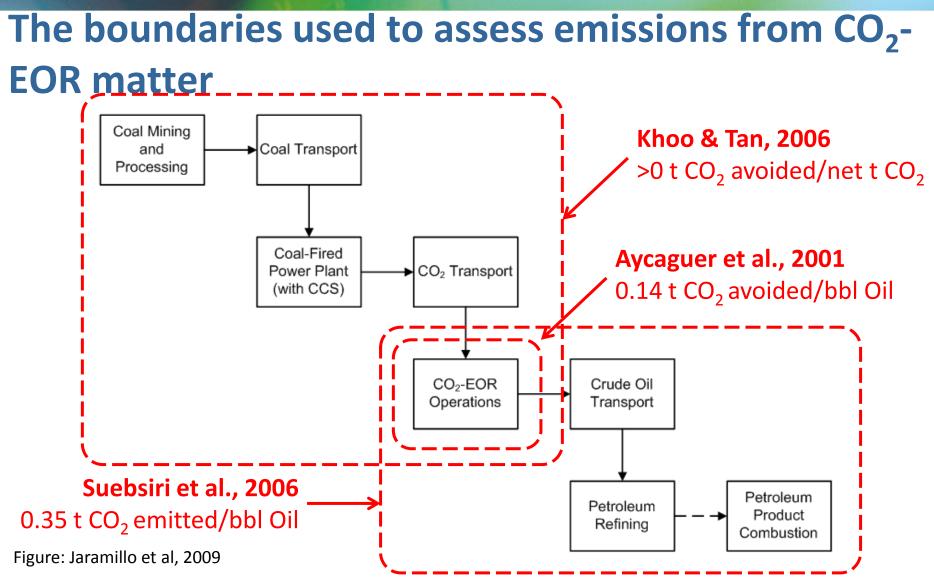


Around 30,000 bbl/day total production, over 20,000 bbl/d due to CO₂-EOR

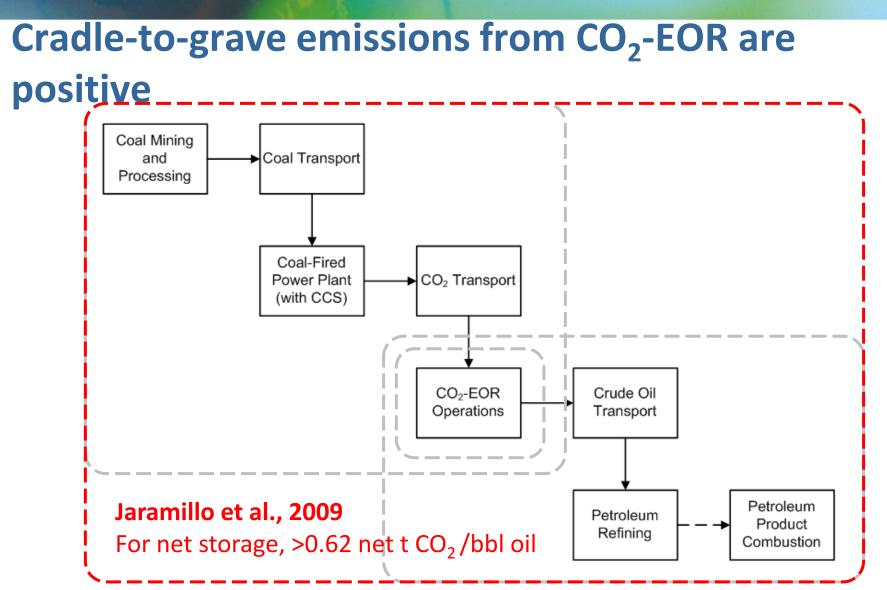
Figure: Cenovus Energy/Malcolm Wilson, PTRC

An upwards trend for US miscible projects and production from CO₂-EOR

CARBON CAPTURE AND STORAGE



CARBON CAPTURE AND STORAGE


Three key messages

- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

Emissions can be reduced through displacement

Marginal Barrel	Marginal Generation Displaced (kg CO ₂ e/MWh)	Emissions Reduction Efficiency			
Displaced (kg CO ₂ e/bbl)		Project 1	Project 2	Project 3	Project 4
Current Average Consumption- USA (529)	Current Average Generation-USA (652)	71%	68%	70%	73%
Canadian In- Situ SCO (600)	Uncontrolled IGCC (894)	140%	128%	137%	145%
	NGCC (425)	87%	75%	83%	92%
Saudi Arabian Light (521)	Uncontrolled IGCC (894)	94%	92%	93%	95%
	NGCC (425)	41%	38%	40%	42%
	Carbon-free Electricity (0)	-8%	-10%	-8%	-7%

Important observations from past lifecycle assessment research

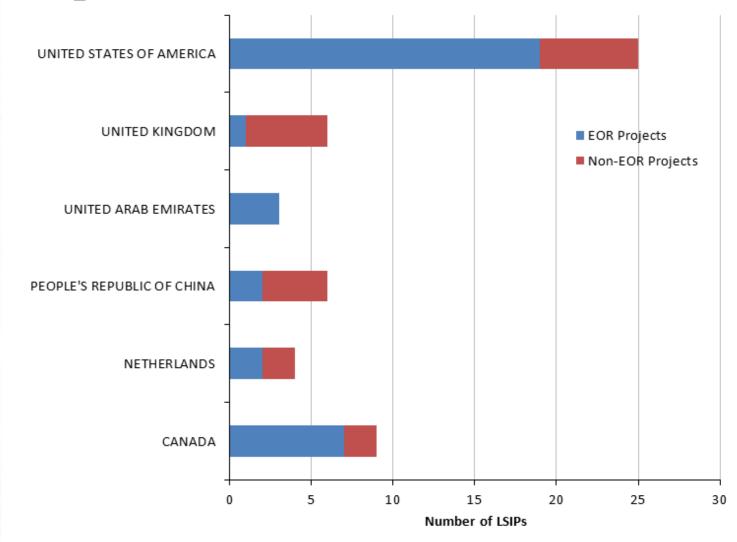
- 1. Emissions depend on boundaries:
 - a) Including emissions from oil production makes business-as-usual (BAU) CO₂-EOR a net emitter
 - b) Changes to design and operation of BAU CO₂-EOR could decrease the CO₂ footprint
- If energy-related emissions that would otherwise be produced from an equivalent system are displaced, CO₂-EOR reduces emissions
- Emissions reduction efficiency is a function of energy displacement and CO₂ utilization
 - a) Displacement of CO₂-intensive power and oil results in a larger emissions reduction than would otherwise occur

CARBON CAPTURE AND STORAGE

Three key messages

- CO₂-flood enhanced oil recovery (CO₂-EOR) is a technically proven and well understood process that is applied commercially today
- CO₂-EOR results in storage of CO₂, however the emissions reduction benefit is dependent on design of the project and the policy environment
- 3. There are barriers to designing and operating a CO_2 -EOR project as part of a CCS project that need to be resolved for CO_2 -EOR to play a role in reducing emissions

Attributes of CO₂-EOR operations necessary for qualification as storage


Technology	Energy Policy	Climate Policy
 Increase net CO₂	 Law and	 Measurable
utilization through	regulation to	emissions reduction
changes to design and	enable CO ₂ -EOR	goals and
operation (?) Monitoring,	as a oil recovery	accompanying policy Laws and regulation
measurement, and	process Regulation to	enabling CO ₂ -EOR as
verification of similar	ensure that CO ₂ -	climate change
stringency to that applied	EOR is undertaken	mitigation option Accounting rules that
to saline aquifers Abandonment to ensure	safely for humans	accurately award
long-term retention of	and the	credit for emissions
stored CO ₂	environment	avoided

CARBON CAPTURE

AND STORAGE

Numerous planned CCS projects rely on CO₂-EOR

Data: GCCSI Project Database, 7 Nov. 2011

Barriers to private investment in CO₂-EOR

BAU CO2-EOR	CO ₂ -EOR for Climate Change Mitigation
 Low valued investment option in IOC portfolios Lack of low cost CO₂ for injection in many places Competition with other EOR processes Mismatch in business cases for capture versus injection 	 Those for BAU CO₂-EOR, PLUS: No return on additional cost for storage Cost for monitoring, measurement, and verification Cost for ensuring long-term containment

Can incentive policies address these issues? If so, how?

D STORAGE

Objectives CO₂-EOR analysis at the IEA

- A clear understanding of the global potential for CO₂-EOR to contribute to emissions reductions
- Identification of unique considerations that need to be addressed to achieve emissions reductions
- 3. Identification and understanding of gaps and barriers that prevent development of projects
- Sound recommendations for member countries to enable CO₂-EOR as climate policy option

IEA working paper on CO₂-EOR as storage

- **1.** A brief history of enhanced oil recovery
- 2. Objectives
- **3.** Business as usual enhanced oil recovery
 - a. Process details and applicability
 - b. Conventional economics
 - c. Global potential for oil production
 - d. The emissions balance
 - e. Legal and institutional framework

4. Enhanced oil recovery for storage

- a. Engineering the EOR process for storage
- b. Accounting for emissions reductions from EOR
- c. Global potential for oil production and storage
- d. Legal, regulatory requirements
- **5.** Necessary attributes of EOR for storage
- 6. Barriers to enhanced oil recovery as storage

CARBON CAPTURE

IEA-OPEC dialogue on CO₂-EOR as storage

The Kuwait Petroleum Company hosted a joint IEA-OPEC workshop on February 7-8 in Kuwait City

Four objectives:

- Review CO₂-EOR technology, its potential benefits and the technical considerations, challenges and risks for turning CO₂-EOR into CO₂ storage
- 2. Share lessons learned from some of the existing CO_2 -EOR projects and from past experiences
- 3. Gain deeper insight into the commercial and economic aspects for CO₂-EOR as CO₂ storage
- 4. Identify areas of mutual interest for a possible follow-up workshop

International Energy Agency

Questions?

Sean McCoy, Ph.D. International Energy Agency Energy Analyst, Legal & Regulatory Issues

Telephone: +33 (0)1 40 57 67 07 Email: sean.mccoy@iea.org Web: www.iea.org/ccs/