

在中国二氧化碳化学利用的早期机会 Early opportunities of CO₂ Chemical tilization In China

魏伟

Wei Wei

中国科学院上海高等研究院

Shanghai Advanced Research Institute, CAS

Chemical Utilization of CO₂: What and Why?

*Chemical utilization of CO*₂ is feature by the chemical conversion process, which produces value-add products from CO₂ and other co-reactants.

Chemical Utilization of CO₂: Strategies

Chemical Utilization of CO₂: Established Processes

Current Available Processes for Chemical Utilization*

	Urea	Soda	Carbonate/Salicylic Acid
2012 Production (Mt)	70	24	~6
2012 CO ₂ Reduction (Mt)	50	10	~4
Value (Bn RMB)	140	36	_**
Predicted 2020 CO ₂ Reduction (Mt)	60	20	_**
Predicted 2030 CO ₂ Reduction (Mt)	70	29	_**

^{*} China Based Data

^{*} Unpredictable due to technical competance

Technical Evaluation

1. CO₂ reforming of CH₄ to syngas

$$\frac{\text{CO}_2}{\text{Catalysts}} \rightarrow \text{Syngas}$$

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.73
Direct reduction	0.20
Substitution of Raw Materials	1.80
Substitution of Products	0.00
Overall	2.00

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
1.50	133.50	15.00	60.00	300.00	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
5.00	45.00	50.00	150.00	500.00	
ψ 1 1 1	* Under strict reduction reliev				

^{*} Under strict reduction policy

Technical...

- Pilot scale testing is on going
- 2~4 years to commercialization
- Better catalysts are needed
- Reactor design and process scale up

Economical...

- Comparable with current technologies and policy in locations close to coal-bed methane and/or coal-conversion exhaust gas resources
- Further reduction of process cost is possible
- Output values of 4.5 and 15 billion RMB can be achieved by 2020 and 2030

- Large amounts of solid pollutants and waste water can be avoided
- Extra options on raw materials for energy-related industries
- New growth sector in low carbon & green industries

2. CO₂ thermal decomposition for liquids synthesis

$$\begin{array}{c} \text{CO}_2 \xrightarrow{\text{Fe}_3\text{O}_4 \text{ Looping}} \text{CO} \xrightarrow{\text{High Temp.}} \text{CO} \xrightarrow{\text{Liquids}} \\ & \xrightarrow{\text{O}_2} \end{array}$$

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	1.57
Direct reduction	1.57
Substitution of Raw Materials	1.80
Substitution of Products	0.00
Overall	3.37

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
0	0	0	0	29.6	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
1.16	1.34	2.50	10.11	40.44	

^{*} Under strict reduction policy

Technical...

- Initial laboratory testing
- Difficulties in high temperature reactor and integration with solar collector
- More efficient looping agents are needed

Economical...

- Currently cost ineffective
- Potentially comparative once technical difficulties are solved

- Pollutant & emission free process
- Substitution of fossil fuels by CO₂

3. CO₂ hydrogenation to methanol

$$CO_2 \xrightarrow{H_2} Methanol$$

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	1.37
Direct reduction	0.70
Substitution of Raw Materials	4.00
Substitution of Products	0.00
Overall	4.70

direct	Total	Compulsory*	C	
		Compuisory	Capacity	
.02	20.00	47.00	235.00	
2030				
direct	Total	Compulsory*	Capacity	
.55	50.00	94.00	376.00	
	direct	203 direct Total	2030 direct Total Compulsory* .55 50.00 94.00	

^{*} Under strict reduction policy

Technical...

- Pilot scale testing is on going
- ~5 years to industrial demonstration
- Substantially rely on the development of renewables to provide low-price hydrogen

Economical...

- Lower cost compared with the current coal-based methanol in H2-rich locations such as salt industries
- Even more competitive when hydrogen can be supplied from renewable energies
- Output values of 12.5 and 35 billion RMB can be achieved by 2020 and 2030 under current policies

- Large amounts of CO₂ reduction
- Saving of fossil fuels
- Make the most of by-produced H₂ in certain sites

4. CO₂ to organic carbonate

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.50
Direct reduction	0.20
Substitution of Raw Materials	0.50
Substitution of Products	0.00
Overall	0.70

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
1.00	2.50	3.50	5.60	7.00	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
Direct 1.43	Indirect 3.57	Total 5.00	Compulsory* 8.40	Capacity 10.50	

Technical...

- Industrial demonstration is on going
- More efficient catalysts are needed
- Necessary improvement on process/separation design

Economical...

- Lower cost compared with the current transesterification process
- Output values of 32.5 and 48.7 billion RMB can be achieved by 2020 and 2030 under current policies

- Much greener than current technology
- Value-add product with a wide range of applications

$$CO_2 \xrightarrow{H_2}$$
 Formic Acid

- Environmental friendly
- Important potential in CO2 reduction (Multi-million t/year in 2020)
- Research in starting stage, far from scale up
- Unpredictable

6. CO₂ to degradable polymer materials

PPC: poly(propylene carbonate)

PC: polycarbonate

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.43
Direct reduction	0.25
Substitution of Raw Materials	0.36
Substitution of Products	0.00
Overall	0.61

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
0.04	0.06	0.10	0.50	3.05	
2030					
		203	30		
Direct	Indirect	Total	30 Compulsory*	Capacity	
Direct 0.20	Indirect 0.30			Capacity 6.10	

Technical...

- Industrial demonstration is on going
- 5~10 years to large scale implementation
- Can be further improved by more efficient catalysts

Economical...

- Higher than traditional plastic, promotion policies are needed
- Output values of 6 and 12 billion RMB can be achieved by 2020 and 2030 under current policies

- Highly green and pollutants-free process
- Value-add product with a wide range of applications

7. CO₂ to isocyanate

CO₂ Aniline, Formaldehyde MDI Catalysts

MDI: Diphenyl-methane-diisocyanate

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.35
Direct reduction	0.35
Substitution of Raw Materials	0.24
Substitution of Products	0.00
Overall	0.59

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
~0.06	~0.06	~0.12	0.29	1.18	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
0.40	0.30	0.70	1.18	2.36	
* Under strict reduction policy					

^{*} Under strict reduction policy

Technical...

- Industrial demonstration is on going
- Commercially available in 5-10 years
- Can be further improved by more efficient catalysts, reactor design and process integration

Economical...

- Lower cost than current phosgene route
- Output values of 4 and 24 billion RMB can be achieved by 2020 and 2030 under current policies

- Greener by substituting phosgene
- Highly flexible in scale and location
- Value-add product with a wide range of applications
- Improve the carbonate industrial chain

8. CO₂ to polycarbonate

PPC: poly(propylene carbonate)

PET: poly(ethylene terephthalate)

PES: Poly(ethylene succinate)

PC: polycarbonate

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.68
Direct reduction	0.90
Substitution of Raw Materials	0.30
Substitution of Products	0.00
Overall	1.18

2020						
Direct	Indirect	Total	Compulsory*	Capacity		
1.20	0.50	1.70	5.00	17.00		
2030						
Direct	Indirect	Total	Compulsory*	Capacity		
1.60	0.70	2.20	6.80	22.50		
		* Under strict reduction policy				

^{*} Under strict reduction policy

Technical...

- Under kilo-t scale demonstration
- Commercially available ~5 years
- More efficient catalysts are needed

Economical...

- Comparable whit the current phosgene route for PC synthesis
- Cost-effective than current technologies for PET and PES synthesis
- Output values of 50 and 80 billion RMB can be achieved by 2020 and 2030 under current policies

- Substitution of fossil fuels by CO₂
- Greener by substituting phosgene
- Value-added products

9. CO₂ mineralization with steel slag

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.52
Direct reduction	0.62
Substitution of Raw Materials	0.00
Substitution of Products	2.78
Overall	2.36

2020						
Direct	Indirect	Total	Compulsory*	Capacity		
0.51	4.71	5.10	15.00	50.00		
2030						
Direct	Indirect	Total	Compulsory*	Capacity		
2.34	17.04	17.40	40.00	50.00		
* II. 1						

^{*} Under strict reduction policy

Technical...

- Scaling up on multi-kilo t grade
- Efficient reactor for solid-liquid multi phase reactor is needed

Economical...

- Excellent profit due to mineralized products
- Output values of 4 and 15 billion RMB can be achieved by 2020 and 2030 under current policies

- Important potential in CO₂ reduction and solid waste disposal
- Considerable contribution to sustainable development

Ammonia, Phosphogypsum \rightarrow CaCO₃+(NH₄)₂SO₄

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.33
Direct reduction	0.23
Substitution of Raw Materials	0.03
Substitution of Products	0.00
Overall	0.26

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
0.09	0.01	0.10	0.30	13.00	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
0.88	0.12	1.00	1.66	13.00	
* Under strict reduction policy					

Unaer strict reauction policy

Technical...

- Industrialized for 2-step method
- Under scale up for 1-step method
- 3~5 year to solve technical difficulties

Economical...

- Excellent profit due to mineralized products and by-produced fertilizer
- Further reduction of process cost is possible
- Output values of 0.06 and 0.6 billion RMB can be achieved by 2020 and 2030 under current policies

- Important potential in CO₂ reduction and solid waste disposal
- Minimize environmental footprints of phosphorus chemistry

11. CO₂ mineralization with potash feldspar

$$CO_2$$
 Potash Feldspar \rightarrow Ca CO_3 +K-based fertilizer

CO₂ reduction analysis

(t CO₂/t Product)

Direct utilization	0.47
Direct reduction	0.45
Substitution of Raw Materials	0.00
Substitution of Products	0.00
Overall	0.45

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
0.10	0.00	0.10	0.50	6.75	
2030					
Direct	Indirect	Total	Compulsory*	Capacity	
2.00	0.00	2.00	4.50	9.00	
* II 1					

^{*} Under strict reduction policy

Technical...

- Technical difficulties such as process integration exists
- 5~8 year to quasi-industralization

Economical...

- Higher than current routs for production of K-based fertilizer
- Can be promoted by consider environmental benefits and carbon tax
- Output values of 0.4 and 16 billion RMB can be achieved by 2020 and 2030 under current policies

- Important potential in CO₂ reduction
- Suitable for China due to limited soluble K resources

Chemical Utilization of CO₂: Summary(1)

Chemical utilization of CO_2 enables the conversion of CO_2 to a wide range of chemicals, which is a potential option for CO_2 reduction.

2020					
Direct	Indirect	Total	Compulsory*	Capacity	
7.37	38.39	45.76	80.23	512.56	

2030					
Direct	Indirect	Total	Compulsory*	Capacity	
20.47	129.03	131.50	318.13	779.75	

^{*} *Under strict reduction policy*

Chemical Utilization of CO₂: Summary (2)

Develop Stages of Strategies for Chemical CO₂ Utilization

Initial Study	Lab Testing	Pilot Demo	Approaching Commercialization
			 CO₂ to dimethyl carbonate CO₂ to degradable polymer materials
		 CO₂ hydroge CO₂ to isocya CO₂ to polyc CO₂ mineral 	· · · · · · · · · · · · · · · · · · ·
	_	decomposition fo	or liquids synthesis sh feldspar

- Direct synthesis of dimethyl carbonate from CO₂
- CO₂ hydrogenation to formic acid

Most strategies are in pilot-scale demonstration, funding and supports from government and companies are highly desired to promote the development of related technologies.

