Global Experience with CCS Pilot Projects CCS developments in cement: ECRA, Norcem

Rob van der Meer December 5th, 2013

Index

ECRA

- European Cement Research Academy

ECRA CCS Study

- Post combustion
- Oxyfuel
- NORCEM CCS project

ECRA: The European Cement Research Academy

ECRA is an internationally recognized European research body in the field of cement and concrete technology.

ECRA was founded in 2003:

- as a platform to stimulate and undertake research activities in the context of the production of cement and its application in concrete
- to facilitate and accelerate innovation to guide the cement industry by creating and disseminating knowledge from research.
- ECRA initiates and provides seminars and workshops teaching state-of-theart knowledge on cement and concrete technology and communicating the latest research findings
- ECRA undertakes dedicated research projects
- ECRA focuses on issues which individual companies may not be able to tackle

alone and are of major importance to the cement industry as a whole

ECRA: Successful seminars and workshops

Examples of seminar/workshop topics

- Alternative fuels and raw materials
- Grinding efficiency
- Clinker reactivity and cement performance
- CO₂ monitoring & reporting
- Process technology

Seminars 2014

- Alternative Fuels: Quality and environmental control
- Quality control of cement
- CO₂ monitoring and reporting: Methods, experiences and new developments
- Refractory materials and high temperature corrosion in the cement industry
- Hydration of blended cements

Training Course 2014

Slide 4 — Clinker and cement production Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013

WBCSD/IEA cement technology roadmap 2009

4 Levers for CO₂ emissions reductions

- Energy efficiency 27% Alternative fuels (biomass) 19% _ 9%
- **Clinker** substitution ____
- Carbon Capture and Storage

Cement Technology Roadmap 2009 Carbon emissions reductions up to 2050

iea

46%

ECRA CCS project: Objectives

- Technical and economical feasibility of CCS technologies
- No focus on CO₂ transport and storage
- Integration of cement organisations: CSI, CEMBUREAU, PCA, etc.
- Joint research activities
- Cooperation with universities

HEIDELBERGCEMENT

Slide 6 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013

ECRA CCS Project: Research Agenda

Slide 7 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013

Oxy-fuel technology

- Combustion with <u>pure oxygen</u> instead of ambient air
- Flue gas recirculation to regulate temperature level
- Integrated system

 <u>Doubling</u> of the electrical energy demand per tonne of produced cement

 Thermal energy demand constant

Limiting factors by quality and durability requirements

- No serious influence on clinker composition
- Slight differences in cement properties (caused by Fe²⁺) are in range of assured quality
- No negative influence on basic refractory material detected
- Using non-basic materials an increasing thermo-chemical reaction expected
- Adaption of refractory brickwork necessary
- Long-term test for evaluation advisable

No barriers expected from clinker quality and refractory durability

Flue gas conditioning decisive issues

- Main influencing parameter: degree of false air intrusion
- Cost of CO₂ compression and purification ranges
 - from about € 24 to about € 27/ton* depending on false air intrusion and CO₂ purity
- Capture rate of 90% possible.
 At higher cost level capture rates of 99% are achievable.
- Major intrusion from sealing locations like doors and poke holes
- Improved maintenance of these locations (gap reduction of 25%) would reduce intrusion to 6%.
- Singular sealing locations at kiln can be equipped with seal gas technology

Slight cost increase of CPU by impurities. Decrease of false air by improved maintenance sufficient

35%

Slide 10 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013 Not only CO2 captured ! SO2, Nox, heavy metals, etc

Retrofitting boundaries

- Important aspect for the application of oxy-fuel in Europe
- Retrofitting an existing burner for oxy-fuel application is unlikely, but replacement by a suitable design is possible
- Designing a gas-tight two-stage cooler is feasible
- False air intrusion could be reduced to the greatest possible extent by overhauling/ replacing inspection doors and similar devices (< 6%)</p>
- New safety and controlling devices necessary
- Space requirements of ASU/CPU
- Conventional behavior in trouble shooting restricted (no opening of doors/flaps in the plant etc.)

Less limiting factors for retrofitting than expected

Phase IV - Deliverables

Phase IV. A:

- Provide answers to the remaining challenges and further optimise the findings for a hypothetical medium sized plant (Work package A)
- Prepare the next steps towards a pilot kiln: work out detailed technical and economic concepts for a pilot-scale plant (Work package B)

Phase IV. B:

 Work out detailed technical and economic concepts concerning the retrofitting of a full-scale existing plant (Work package C)

Phase IV.A - Work packages

No.	Sub-package (short title)	Who?
A 1	Simulation study	Research Institute
A 3	Advanced cooler design	IKN
A 4	Future oxygen supply	Danish Technical University
A 5	Experimental verification of sealing potential	Irish Cement + Research Institute
В	Concept for a pilot plant:	
B 1	Plant capacity	Aixergee
B 2	Design principle	Aixergee
B 3	Dimensioning	CINAR + Fives FCB (supported by Research Institute)
B 4	Control and safety devices	n.n. (retendering)
B 5	Cost estimation	n.n. (retendering)
B 6	Concept for reuse	Subgroup
D1	CO ₂ overall balance	Student work
Е	Coordination	Research Institute

Work package A1

- Simulation study:
- Task assigned to: Research Institute
- Objectives:
 - Integration of all findings from phase III
 - Simulation of different capacities and plant layouts, process fluctuation and application of alternative fuels/ bypass
 - Concept for switching mode

Progress:

- Evaluation of impact of plant capacity/ alt. fuels, false air ingress, ASU and condenser performance and recirculation rate on energy demand
- Concept for bypass system and switching mode
- Status: Programming work and further simulations progressing

Work package A3

- Advanced cooler design:
- Task assigned to: IKN
- Objectives:
 - Further development of advanced cooler conception
 - Minimizing the risks of the concepts of phase III
 - Evaluation of acceptable gas-tightness

Progress:

- Two potential concepts developed and balanced (Intermediate Chute, Gas Recirculating Cooler)
- Evaluation of pro/cons, recommendations

Status: Final report in progress

Work package A5

- Experimental verification of sealing potential:
- Task assigned to: Irish Cement, Research Institute
- Objectives:
 - Experimental evaluation of best practice maintenance for false air reduction
 - Measurements (2 trials), long term inspection

Progress:

- Trials conducted and evaluated
- Identification of reference (15 %) and improved maintenance (8 %) false air intrusion level
- **Status:** Student's report available,

long term inspection on-going

Work package B: Concept of a pilot plant

B4: Control of and safety concept

Slide 17 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013 B5: Costs estimation

B6: Concept for reuse of the plant

CCR: Utilization of captured CO₂ for MeOH or CH₄

Slide 18 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013

Carbon capture project in Brevik

- The first capture project in the cement sector
- We are in need of more accurate knowledge
- Cement plants suitable for CO₂ capture
 - High concentration of CO₂
 - The flue gas is more "polluted"
 - Available heat energy from kilns
- Energy efficiency Costs (CAPEX and OPEX)

Project information

International project on behalf of the cement sector in Europe

Partners:

Norcem, HeidelbergCement og ECRA (European Cement Research Academy)

Funding:

- State funding through Gassnova (Climit program): 75 %
- Total budged: 93 MNOK (11,7 M€)

Project period: 3, 5 years from May 2013

Four capture technologies for testing

Technology	Supplier	
Amine technology	Aker Clean Carbon	CleanCarbon part of Aker
Membrane technology	DNV KEMA, NTNU & Yodfat Engineers	
Solid sorbent technology	RTI	INTERNATIONAL
Calcium Cycle (Carbonate Looping, RCC)	Alstom Power	POWER ALSTOM

Slide 21 Global experience with CCS Pilot Projects Rob van der Meer – 27/11/2013

Cooperation with technology providers: ACC

- Amine scrubbing technology
- Mobil Test Unit (MTU)
 - 40 foot container
 - Absorption tower: 25 m
 - Stripper: 13.4 m
- Capacity: 2,000 t CO₂/ year

