Coal Synfuel and CO₂ Enhanced Oil Recovery Opportunities for Early CCS Projects

Robert H. Williams Princeton Environmental Institute Princeton University

IEA Workshop on Industrial CCS Beijing, China 5 December 2013

Outline

- Widespread deployment of CCS technology requires a strong carbon-mitigation policy or an equivalent incentive.
- In the absence of such policies there are two promising approaches for going forward in the near term with no or only modest government subsidies—by taking advantage of:
 - The inherently low CO₂ capture cost at chemical and synfuel plants (at which CO₂ has to be removed before synthesis—even in absence of a carbon policy);
 - The market value of captured CO_2 if used for enhanced oil recovery (EOR) applications.
- Chinese opportunities in both areas are reviewed.
- The economic aspects of exploiting CO₂ EOR opportunities is explored for systems that make electricity from coal, synfuels from coal, and synfuels + electricity from coal in the US.

Low-Cost CO₂ Capture Opportunities in China (Chemical and Synfuel Plants)

- <u>Pins</u>: 400 existing & planned chemical plants releasing concentrated CO₂ (low capture costs)
- Green areas: sedimentary basins where suitable storage sites might be found
- <u>18 "Big Pins"</u>: plants within 10 km of deep saline formation emitting > 10⁶ t/y CO₂
 → many opportunities for megascale aquifer storage projects with low cost CO₂
- International collaborative CO₂ storage projects?
 Source: Zheng et al. (2010).

CO₂ Enhanced Oil Recovery (EOR): Early Opportunity for CCS

US Examples of Primary Oil Recovery + Secondary Oil Recovery + Tertiary Oil Recovery via EOR

CO₂ enhanced oil recovery is well suited for tertiary light oil recovery from depths > 800 m, making possible recovery of up to an additional ~ 20% of original oil in place (OOIP) after recovery of 35%-45% of OOIP via primary and secondary recovery. <u>Source</u>: NCC (2012).

Aside from enabling early CCS projects, impact of new crude oil via EOR on atmospheric CO₂ depends on behavior of world oil market:

Under what conditions is total oil consumption the same without and with CO₂ EOR?

CO₂ Pipelines & Injection Sites for EOR in US

 CO_2 EOR technology is well established in the US—providing 280,000 bbls/d of crude oil (6% of US crude oil production) using ~ 60 million tonnes per year of CO_2 delivered to injection sites via 6000 km of pipelines. Most CO_2 comes from natural sources.

US CO₂ Demand & Supply for EOR (NETL, 2011)

- With adequate supply of low-cost anthropogenic CO₂, US crude oil production via CO₂ EOR could increase from 280,000 bbls/day to 3.7 million bbls/day (NETL, 2011), plausibly by 2030
- If realized via next generation CO₂ EOR technology (NETL, 2011), cumulative storage, 2020-2030: ~ 1.7 Gt CO₂ [80% of cumulative 2030 North American storage goal in IEA (2013b)]
- Regulatory regime spelling out how CO₂ EOR qualifies as secure storage urgently needed— MMV protocols, etc. (CSLF, 2013)

Planned CO₂ EOR Projects for China

Project leader	CO ₂ supply	Oil field (City, Province)	Pipeline length, km	Targeted storage rate, 10 ⁶ t/y (expected storage for project life, 10 ⁶ t)	Expected year for reaching targeted injection rate
Petro- China	Natural gas processing	Jilin (Songyuan, Jilin)	151-200	0.8 to 1.0 (11 - 20)	2015
Shaanxi Yanchang Petroleum Group	Coal to acetic acid plant	Jingbian (Yulin, Shaanxi)	200-250	0.36 (6 - 8)	2016
Sinopec	FBB Post- combustion capture retrofit	Shengli (Dongying, Shandong)	51-100	1.0 (21 - 30)	2017
Huaneng GreenGen	Capture from IGCC	Tianjin (SE of Beijing)	51-100	Up to 2 (41 - 50)	2020

Data largely from publications of the Global CCS Institute

Opportunity for CCS via EOR expected to be much less for China than for US

GHGI—a "Carbon Footprint" Metric

A widely applicable metric for measuring GHG emissions mitigation that is especially helpful in understanding the carbon mitigation benefits of coproduction systems is the greenhouse gas emissions index:

$GHGI = \frac{(\text{total GHG emissions for energy production & consumption})}{(\text{total GHG emissions for fossil energy displaced})}$

For systems making liquid transportation fuels and/or electricity, fossil energy displaced is assumed to be equivalent crude-oil-derived products + electricity from new super-critical coal plants venting CO₂.

GHG emissions arising outside energy conversion plant boundaries are based on the GREET model of the Argonne National Laboratory.

CTL-RC-CCS System Schematic

Synthesis gas from an entrained-flow coal gasifier is used to make synthetic fuels and electricity with CO_2 capture. A water gas shift reactor upstream of synthesis adjusts the H_2/CO ratio in synthesis gas to 1.0. Shifted synthesis gas is passed (after CO_2 and H_2S removal) to a liquid-phase Fischer-Tropsch (F-T) synthesis reactor with an iron catalyst operated in a "recycle" (RC) system configuration: syngas unconverted in a single pass through the synthesis reactor is recycled back to the synthesis reactor with the aim of maximizing liquid fuel output. An auto-thermal reformer (ATR) is included in the recycle loop to convert $C_1 - C_4$ gases into CO and H_2 to further increase liquid fuel output. Electricity is generated in a steam turbine power plant from purge gases removed from the recycle loop (to prevent the buildup of inerts) and from light ends recovered from the F-T refinery. Source: Liu et al. (2011).

CTL-OT-CCS System Schematic

This system is like CTL-RC-CCS except that F-T production is via a "once-through" (OT) system configuration: syngas unconverted in a single pass through the synthesis reactor is delivered to a gas turbine combined cycle (GTCC) to provide electricity as a major coproduct <u>after</u> CO_2 is removed from syngas exiting the synthesis reactor (this syngas contains CO_2 because the iron catalyst has water gas shift activity). CO_2 is removed both upstream and downstream of synthesis (each accounting for ~ ½ of total captured CO_2). <u>Source</u>: Liu et al. (2011).

Alternative Energy Conversion Options

Technology feature	CTL-RC -CCS ^a	CTL-OT -CCS ^a	NGCC -V ^b	PC-CCS retrofit ^c	IGCC -CCS⁵
Electric output capacity, MW _e	98.2	391	555	398	543
(% of energy output)	(8.5)	(32)	(100)	(100)	(100)
FTL capacity, bbls/day	16,650	13,200	0	0	0
Energy output capacity, MW (LHV)	1150	1220	555	398	543
Efficiency (HHV), %	48.9	46.1	50.2	24.7	32.6
GHGI (in declining order)	0.89	0.70	0.57	0.23	0.17
CO_2 storage rate, 10^6 t/y	3.2	3.6	0	3.5	3.4
(% of feedstock C stored as CO_2)	(52)	(52)	(0)	(90)	(88)
Capital, NOAK plant, \$10 ⁶	2.7	2.7	0.44	0.93	2.0

^a <u>Based on</u>: Liu et al. (2011).

^b <u>From</u>: NETL (2010).

^c <u>From</u>: NCC (2012).

CTL plants are scaled to have same capital cost—to facilitate investment choice by CTL project developer

NOAK Capital cost = Total Plant Cost (TPC) + Owner's Cost (OC)—see A.1, Appendix for details.

Crude Oil Production via Use of Captured CO₂ for EOR

Tachualam fastura	CTL-RC	CTL-OT	PC-CCS	IGCC
lechnology feature	-CCS	-CCS	retrofit	-CCS
Ave. crude oil production via state-of-the-	21,700	27,100	23,800	23,300
art CO ₂ EOR technology (bbls per day)				
Bbls of crude oil per bbl of FTL				
State-of-the-art CO ₂ EOR technology	1.45	2.28	-	-
Next-generation CO ₂ EOR technology	1.94	3.04	-	-
CO ₂ capture rate, tonnes per hour	403	451	467	457
CO ₂ capture cost for NOAK plants, \$ per tonne of CO ₂	11.6	25.6	51.0	34.3

The amount of purchased CO_2 for EOR is 0.4 t and 0.3 t per incremental bbl of crude oil produced for state-of-the-art CO_2 and next-generation EOR technologies, respectively (NETL, 2011). In slides that follow, the economics are carried out for state-of-the-art CO_2 EOR technology.

US Average Imported Crude Oil Price

Prices for 2010-2012 are historical data from EIA (2013b). Prices for 2013-2040 are projections for *Annual Energy Outlook 2013* Reference Scenario (EIA, 2013c).

Prices for Coal and Natural Gas Delivered to to US Power Plant Sites

Prices for 2000-2012 are historical data from EIA (2013b). Prices for 2013-2040 are projections for *Annual Energy Outlook 2013* Reference Scenario (EIA, 2013c).

IRRE for NOAK Plants (Nearby EOR), \$124/bbl Crude Oil

Internal rate of return on equity (IRRE) when the crude oil price is levelized value, 2021-2040, of imported crude oil price for *AEO 2013* Reference Scenario (EIA, 2013c).

IRRE values are low for new IGCC-CCS power-only plants but are acceptably high at all GHG emissions prices for PC-CCS retrofit.

CTL-RC-CCS and CTL-OT-CCS IRRE values are comparable and far higher than for all stand-alone power plants → CTL-OT-CCS considered as a power generator represents a promising approach to coal power generation in a carbon-constrained world.

IRRE for NOAK Plants (Nearby EOR), \$124/bbl Crude Oil

Internal rate of return on equity (IRRE) when the crude oil price is levelized value, 2021-2040, of imported crude oil price for *AEO 2013* Reference Scenario (EIA, 2013c).

IRRE values are low for new IGCC-CCS power-only plants but are acceptably high at all GHG emissions prices for PC-CCS retrofit.

CTL-RC-CCS and CTL-OT-CCS IRRE values are comparable and far higher than for all stand-alone power plants → CTL-OT-CCS considered as a power generator represents a promising approach to coal power generation in a carbon-constrained world...but if oil prices turn out to be lower?

IRRE for NOAK Plants (Nearby EOR), \$0/t GHG Emissions Price

- The CTL options remain more profitable than any of the power-only options down to crude oil prices ~ \$80/bbl.
- Notably IGCC-CCS with captured CO₂ used for EOR is not acceptably profitable at any crude oil price in the absence of a price on GHG emissions.

FOAK vs NOAK Plants

- Much lower IRRE values are expected for more costly first-of-a-kind (FOAK) plants [perhaps up to 2X as costly as NOAK plants described above (Williams, 2013a)]
- But early-mover plant costs are expected to decline with experience [learning by doing (LBD)] (Rubin et al., 2004).
- In absence of a substantial price on GHG emissions subsidies probably be needed for early-mover projects to facilitate technology cost buydown (TCB).
- NOAK plant IRRE analysis can be screening analysis for choosing best TCB candidates:
 - CTL-RC-CCS, CTL-OT-CCS, and PC-CCS retrofit are the more promising candidates
 - Because it is about as profitable as CTL-RC-CCS and far more profitable than any other stand-alone power option for crude oil prices > \$80/bbl, CTL-OT-CCS (considered as a power plant) stands out as the leading candidate for technology cost buydown
- Williams (2013a) estimates that in the TCB process for CTL-OT-CCS linked to CO_2 EOR and a crude oil price = AEO 2013 levelized (2021-2040) Reference Scenario oil price:
 - Subsidies for early-mover projects would be large if it is required that the LCOE be as low as for NGCC-V
 - Only a few (~ 3) plants would require subsidy before CTL-OT-CCS plants could compete without subsidy
 - If subsidies are financed from the new federal corporate income tax revenues/royalties arising from deployment of these systems, new federal revenues net of subsidies would be +tive for the very first plant—at so that needed subsidies would be affordable even for fiscally constrained governments.

Toward Deep Reductions in GHG Emissions

• Despite attractive prospective CTL economics, these synfuel systems are characterized by carbon footprints only modestly less than for conventional energy:

(GHGI = 0.89 for CTL-RC-CCS and 0.70 for CTL-OT-CCS)

- Between now and 2050, deep reductions in GHG emissions will be needed to realize the aspirational goal of keeping the global mean temperature increase from pre-industrial levels below 2°C [as all countries agreed to in Cancun (COP 16, December 2010)].
- Deep reductions in GHG emissions are realizable by coprocessing sustainably grown biomass with coal in CBTL systems similar to CTL systems: negative GHG emissions associated with photosynthetic CO₂ storage is exploited in CBTL systems to offset positive emissions from coal-derived carbon (Liu et al., 2011; Williams, 2013a, 2013b):
 - Coproduction systems coprocessing ~ ¼ biomass (CBTL systems) could be designed to have same carbon footprint (GHGI) as IGCC-CCS; NOAK versions might be highly profitable at the social cost of carbon (Williams, 2013a).
 - CCS via CBTL systems is likely to be more profitable than for BTL systems...a result of scale economies and lower average feedstock cost (Williams, 2013b).
 - For low-rank coals (lignite or subbitiuminous coal) the coprocessing of > ¼ biomass has been demonstrated for the transport gasifier → biomass coprocessing might well go forward first for low-rank coals (Williams, 2013c).
 - The # of costly early-mover systems coprocessing ~ ¼ biomass requiring subsidy in CO₂ EOR applications in the absence of a price on GHG emissions higher than for CTL-OT-CCS but still modest (~ 6) at same projected crude oil price (Williams, 2013a).

Summary of Findings

- There are large opportunities in China for CO₂ storage projects using low-cost CO₂ from chemical and synfuel plants—attractive opportunities for international collaboration.
- What are prospects that CO₂ EOR opportunities can be exploited for CO₂ capture technology market launch without CO₂ emissions price?
 - Poor for new plants producing only electricity;
 - Good for NOAK PC-CCS retrofits; outstanding for NOAK CTL plants;
 - Subsidies will be needed for more costly early-mover plants—but only for a small # of plants in CTL cases.
- CTL coproduction plants are likely to be very profitable in providing electricity as well as liquid fuels with reduced GHG emissions.
- But coprocessing ~ ¼ biomass needed to reduce coproduction system carbon footprint (GHGI) to IGCC-CCS level; such CBTL coproduction plants are likely to be quite profitable at the social cost of carbon.

Appendix with Supporting Materials

A.1: Assumed Exogenous Prices (2012\$) & Financial Assumptions

Levelized fuel prices, 2021-2040, for US average power generators from EIA (2013c) ^a , (\$/GJ _{HHV})				
Coal	2.7			
Natural gas	5.8			
Price of biomass (switchgrass) delivered to conversion plants (\$/GJ _{HHV})	5.4			
Levelized crude oil price, 2021-2040, from EIA (2013c) ^a , \$/bbl	124			
Capacity factors for power (FTL) plants are assumed to be design CFs, %	85 (90)			
Economic life of energy conversion plants (years)	20			
Construction time for energy conversion plants (years)	3			
[OC (owner's cost)]/TPC for new plants ^b	0.228			
Corporate income tax rate, % per year	39.2%			
Property tax & insurance (PTI) as % of TPC assuming zero inflation	2.0			
Debt/equity ratio	55/45			
Real (inflation-corrected) rate of return on debt (ROD), %/year	4.4			
Real rate of return on equity (ROE) for capture cost calculations, %/year	10.2			
Selling price for electricity, \$/MWh _e	\$59.7/MWh ^c + value of GHG emissions			
	for an NGCC-V plant			
Selling prices for synfuels	Refinery-gate price of equivalent crude			
	oil-derived products, including value			
	of fuel-cycle-wide GHG emissions			
Net CO ₂ required per incremental barrel of crude oil, tonnes/barrel	0.4 (state-of-the art value)			
Plant-gate CO ₂ selling price, \$/t	0.444*(Crude oil price, \$/bbl) ^d			
	$-CO_2$ transport cost (\$/t)			
CO_2 transport cost, \$/t	10 (corresponds to nearby EOR)			

^a EIA (2013c).

^b This is the average OC/TPC ratio for power systems analysed in NETL (2010).

^c This is the LCOE for NGCC-V at the levelized NG price, 2021-2040, in the absence of a price on GHG emissions.

^d The CO₂ price (\$/t) at EOR sites in West Texas averaged 0.265 to 0.624 x (crude oil price, \$/bbl), 2008-2011 (Wehner, 2011). In the present analysis, the midrange value of the coefficient is assumed.

A.2: Estimated Landed LNG Prices (\$/MMBTU), November 2013

Source: Waterborne Energy, Inc., 7 October 2013.

For comparison, in 2012 the US average refiner acquisition price for crude oil in 2012 was \$17.7/MMBTU (\$103/bbl) and the average US Henry Hub natural gas price was \$2.67/MMBTU.