

Role of CCS Globally: IEA 2013 CCS Roadmap

Beijing, 5 December 2013 Juho Lipponen, IEA

Carbon capture and storage

Carbon capture and storage defined

Capture

Separation of CO_2 produced during production of power or other products, followed by clean-up and compression of the CO_2

Transport

Movement of CO₂ by pipeline, truck, rail, ship, or barge to a storage facility

Storage

Injection of CO_2 into a suitable storage unit, selected to safely contain the injected CO_2 for long timescales

Outline

- 1. CO₂ challenge and role of CCS
- 2. Status of CCS today
- 3. Charting the way forward

Record-high CO₂ emissions in 2012

 CO_2 emissions trends point to a long-term temperature increase of up to 5.3 °C

Portfolio of decarbonising measures

Emissions Reductions (Gt CO₂)

Near-term solutions important, but not enough!

The case for CCS: fossil fuels

Trend in fuel mix 2010-2050: fossil fuels continue to dominate.

CCS can help to deal with emissions already "locked-in".

Figure 8.14
Energy-related CO₂ emissions from locked-in infrastructure in 2011 and in the 450 Scenario in non-OECD countries

The case for CCS: process industries

Emissions from key industrial sectors expected to increase.

CCS is the only large-scale mitigation option for many industrial sectors.

The case for CCS: economic advantage

Additional USD 36 trillion in investments through 2050 to reach 2DS scenario goals \rightarrow CCS is 10% of this...

40%

A. "ENERGY REALITY" FOSSIL FUELS ARE PART OF TODAY'S AND TOMORROW'S ENERGY MIX Lock-in \rightarrow CCS needed a for "unlocking"

B. "CANNOT REACH TARGETS WITHOUT IT" ALTERNATIVE TECHNOLOGY NOT AVAILABLE AT REASONABLE COST

CCS required in industry

C. "ECONOMIC ADVANTAGE"

IT SAVES US MONEY (POWER SECTOR)

> 40% more investment in power if CCS not available

> > © OECD/IEA 2013

Outline

- 1. CO₂ challenge and role of CCS
- 2. Status of CCS today
- 3. Charting the way forward

CCS is ready for scale-up

Capture technologies understood but expensive

		Syngas-hydrogen capture	Post-process capture	Oxy-fuel combustion	Inherent separation
First-phase industrial applications	Gas processing	-	-	-	Sweetening
	Iron and steel	direct reduced iron (DRI)*, smelting (<i>e.g.</i> Corex)		-	DRI*
	Refining	-	-	-	Coal-to-liquids; synthetic natural gas from coal
					Hydrogen productior
	Chemicals	-	-	-	Ammonia/methanol
	Biofuels	-	-	-	Ethanol fermentation
Power generation	Gas	Gas reforming and combined cycle	Natural gas combined cycle	Oxy-fuel combustion	Chemical looping combustion
	Coal	Integrated gasification combined cycle (IGCC)	Pulverised coal- fired boiler	Oxy-fuel combustion	Chemical looping combustion
	Biomass	IGCC	Biomass-fired boiler	Oxy-fuel combustion	Chemical looping combustion
Second-phase industrial applications	Iron and steel	Hydrogen reduction	Blast furnace capture	Oxy-fuel blast furnace	-
	Refining	Hydrogen fuel steam generation	Process heater and combined heat and power (CHP) capture	Process heater and CHP oxy-fuel	-
	Chemicals	-	Process heater, CHP, steam cracker capture	Process heater and CHP oxy-fuel	-
	Biofuels	Biomass-to-liquids	-	-	Advanced biofuels
	Cement	-	Rotary kiln	Oxy-fuel kiln	Calcium looping
	Pulp and paper	Black liquor gasification	Process heater and CHP capture	Process heater and CHP oxy-fuel	-

Legend: technical maturity of operational CO₂ capture plants to date.

Commercial

Demonstration

1

Pilot

Lab or concept

Three CO₂ capture routes in power

Post-combustion CO ₂ capture	 Fossil fuel or biomass is burnt normally and CO₂ is separated from the exhaust gas 		
Pre-combustion CO ₂ capture	 Fossil fuel or biomass is converted to a mixture of hydrogen and CO₂, from which the CO₂ is separated and hydrogen used for fuel 		
Oxy-combustion CO ₂ capture	 Oxygen is separated from air, and fossil fuels or biomass are then burnt in an atmosphere of oxygen producing only CO₂ and water 		

At the present time, none of the options is superior; each has particular characteristics making it suitable in different power generation applications

Selected CCS demonstration projects in process industries

Name	Location	Sector (Process)	Size (MtCO ₂ /y)	Operation Date
Great Plains Synfuel	North Dakota, USA	Refining (SNG)	3	2000
ADM Decatur	Illinois, USA	Biofuels (Fermentation)	1	2013
Shell Quest	Alberta, Canada	Refining (H ₂)	1	2015
NWR Sturgeon	Alberta, Canada	Refining (H ₂)	1	2016
ESI-Masdar	Abu Dhabi, UAE	Iron & Steel (DRI)	<1	2015
Gorgon	Barrow Island, Australia	Gas Processing	3	2015

Progress with large-scale capture projects

International Energy Agency

lea

The need for project experience in industry-CCS

Source: Industry-CCS annex to TCEP report 2013

Low-carbon & CCS investment to date

- Investment in CCS 2004-2012: USD<u>20</u>bn
- Investment in all clean energy in 2004-2012: USD<u>1670</u>bn

מורכי הואר

Assembling the parts – still a challenge

Economics

- High cost of capture
- Limited business opportunity (EOR, small scale use)
- Unvalued benefit of CCS technology learning

Policy

- Uncertainty about long term climate mitigation goals
- Lack of political recognition of the role of CCS
- Low or inexistent carbon price
- Lack of or limited incentives for CCS

Technology

- No large-scale experience in power and many industrial applications
- Technical complexity of adding capture
- Risks related to storage
- Complex commercial arrangements

Stakeholder views

- Unfavorable views on CCS as perpetuating a fossil fuel world
- Concerns over risks of CO₂ escape
- Opposition to projects
- Lack of understanding

Outline

- 1. CO₂ challenge and role of CCS
- 2. Status of CCS today
- 3. Charting the way forward

IEA vision: 120 Gt of CO₂ stored by 2050

Seven key actions for next seven years

iea

- Introduce financial support mechanisms for demonstration and early deployment.
- Develop laws and regulations that effectively require new-build power capacity to be CCS-ready.
- Significantly increase efforts to improve understanding among the public and stakeholders of CCS technology.
- Implement policies that encourage storage exploration, characterisation and development for CCS projects.
- Reduce the cost of electricity from power plants equipped with capture through continued technology development.
- Prove capture systems at pilot scale in **industrial applications**.
- Encourage efficient development of CO₂ transport infrastructure.

CCS in industrial applications needs a boost

Global Action to Advance arbon Capture and Storage

Annex to Tracking Clean Energy Progress 2013

CLEAN ENERGY

SIX RECOMMENDATIONS:

- 1. Commit public funds to **10** pilot and demo scale projects
- Support projects for contribution to knowledge (not short-term emission reductions)
- 3. Include CCS into industrial strategies
- 4. Start to address **competitiveness** concerns
- 5. Exploit **synergies** between sectors
- 6. Involve all sectors and stakeholders

THANK YOU!

juho.lipponen@iea.org

DOWNLOAD THE ROADMAP AT:

http://www.iea.org/topics/ccs/ccsroadmap2013