

IEA Building Envelope Technologies and Policies Workshop, Paris, 17/11/2011

High Performance Windows and Glazings Technologies, Systems and Tools in the U.S.

Stephen Selkowitz
Windows and Daylighting Group
Building Technologies Department
Lawrence Berkeley National Laboratory

Business and Policy Context

- Severe downturn in Construction Markets
- Future energy costs unclear, policy on carbon??
- Continued Globalization of Markets
 - Investment, China,
- "Technologies" reaching inflection points
 - E.g. Double glazing → Triple: new factory investment
 - New technologies: "smart glass"
 - Shift from "Components" to focus on "Integrated Systems"
- Updates to Mandatory Codes and Standards
- Updates to Voluntary Programs: e.g LEED, EnergyStar
- New State, Federal Energy Savings Requirements
 - E.g. California: "all new buildings net-zero by 2030"
- New Performance Disclosure requirements like EPBD
 - City, State now; will likely spread; How is Envelope Assessed?

Windows Overview

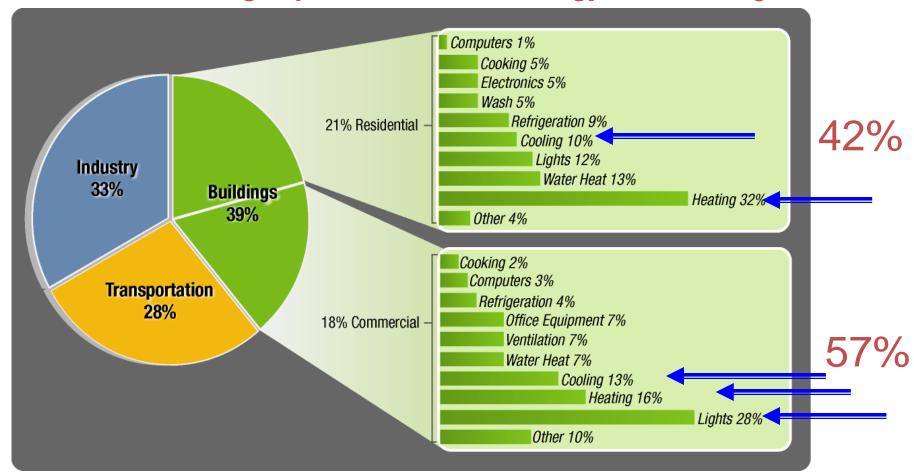
- **Context** (1 Quad = 10^{15} Btu = 1.05×10^{9} GJ; US Energy Use = ~100 Quads)
 - Windows are a 4-5 Quad/yr energy cost (~\$50B/yr) -- and opportunity
 - Vision: change windows from net loss to net supply
 - Highly "visible" component- window selection is "complex"
 - Long-Lived Component- one chance to make the right decision!

Window-Related Energy Consumption (Quads)					
	Residential	Commercial			
Heating	1.65	0.96			
Cooling	1.02	0.52	Daylight: +1 Q		
Total	2.67	1.48			

Needs

- Comprehensive program: spans materials science to specific product R&D to systems integration
- Research Development Demonstration Deployment
- All Climates, All Building Types, New and Retrofit
- Significant Industry Collaboration and Cost Share
- Measurable impact on technology, products, energy savings

Fenestration Impacts on Building Energy Consumption



Buildings consume 40% of total U.S. energy

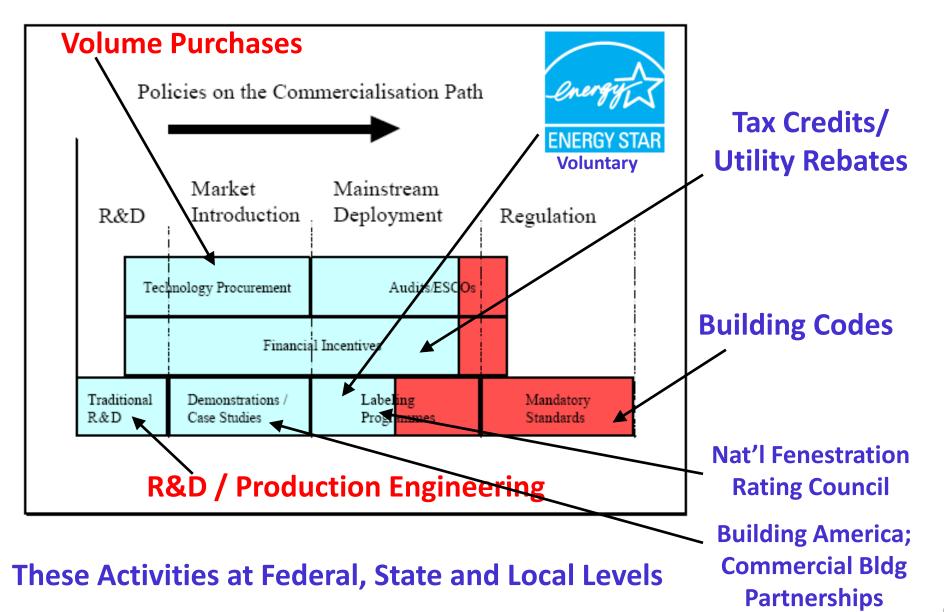
71% of electricity and 54% of natural gas

Windows Do Not Directly Consume Energy

Allocating Impact on End Use Energy is a Challenge

Broad Scope RDD&D Portfolio Propertion Properties Broad Scope RDD&D Portfolio Properties Broad S

R&D Breadth Reflects Diverse Markets, Diverse Efficiency Opportunities

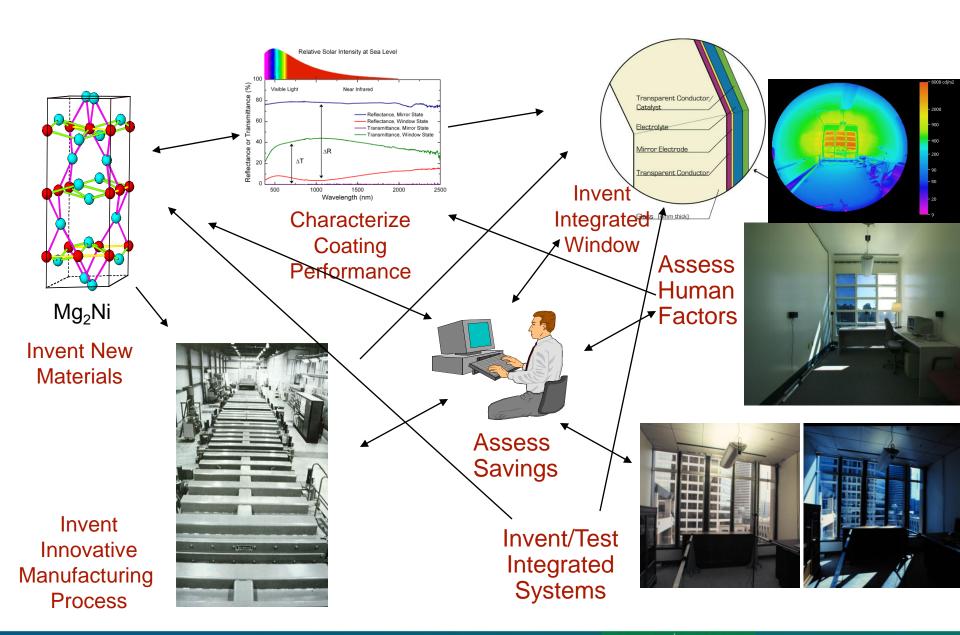

- Markets: New ←→ retrofit
- Building Type: Residential ←→ Commercial
- R&D Scope: Short term ←→ Long Term
 - Full spectrum: Research, Development, Demonstration
 - "Valley of Death" for Innovation and Technology Development
 - Supports Short-term Deployment programs
 - Fill the "innovation pipeline" for longer term success

R&D → Deployment

- Federal Deployment Programs DOE, other agencies
- State and Regional Programs
- Utilities, NGOs, Private programs

Efficiency Policies for Windows ronmental Energy Technologies Division

Broad Scope RDD&D Portfolio Environmental Energy Tech



Diverse Technical Program Areas needed to Capture Savings

- Reduce thermal losses
- Manage dynamic solar gain and glare
- Control and redirect daylight
- Air flow and Natural Ventilation
- Components → Integrated, automated façade systems
- Enabling technologies for performance simulation and measurement

Integrated R&D Strategy: e.g. Electrochromic Devices

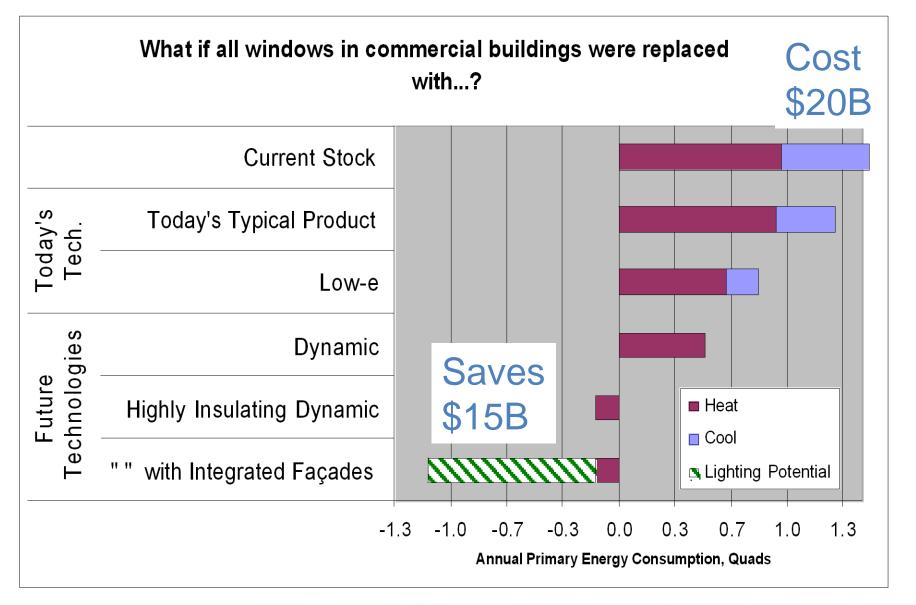
Program Vision: "Zero-Energy Window" Chnologies Division

Energy Losers --> Neutral --> Net Suppliers

- Heating climates
 - Reduce heat losses so that ambient solar energy balances and exceeds loss
 - Need lower heat loss technologies
- Cooling climates
 - Reduce cooling loads
 - Static control -> dynamic control
- All climates
 - Replace electric lighting with daylight
- Electricity supply options
 - Photovoltaics-building skin as power source

Residential Window Savings Potentials Energy Technologies Division

Advanced Window Energy Savings in Homes


Scenari o	Energy Savings over Current Stock		
	Heat, quads	Cool, quads	Total, quads
Sales (Business as usual)	0.49	0.37	0.86
Energy Star (Low-e)	0.69	0.43	1.12
Dynamic Low-e	0.74	0.75	1.49
Triple Pane Low-e	1.20	0.44	1.64
Mixed Triple, Dynamic	1.22	0.55	1.77
High-R Superwindow	1.41	0.44	1.85
High-R Dynamic	1.50	0.75	2.25

Windows account for 1.65Q heating; 1.02Q Cooling = 2.67Q

Conclusion: ideal windows save 80% of total current window energy use

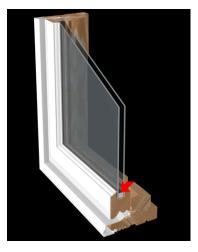
Commercial Building Window Potentials Division

Successes in U.S. Window Markets hoologies Division

(Example: Improved Insulating Properties in Residential market)

1973: Typical Window:

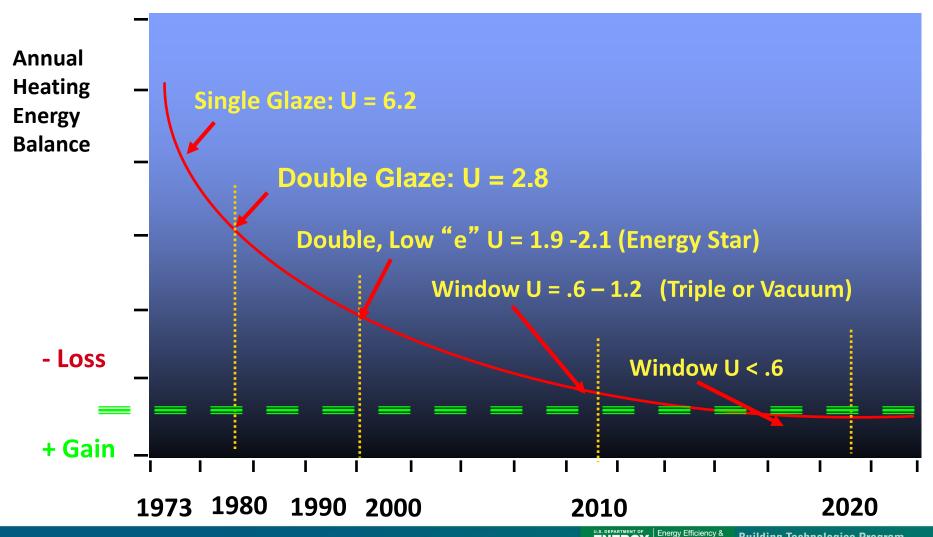
- clear, single glazed,
- double or storm window in north,
- $U_{average} = 4.8 \text{ W/m}^2\text{-K}$


2003: Typical Window:

- 95% double glazed
- 50% have a low-E coating
- 30-65% energy savings vs. 1973
- $U_{average} = 2.5 \text{ W/m}^2\text{-K}$

2030: Future Window:

- Zero net energy use (typical)
 - Net winter gain; 80% cooling savings
- $U_{average} = .6 \text{ W/m}^2\text{-K}$
- Dynamic solar control



Insulating Windows Can Become Energy Producers Environmental Energy Technologies Division

In cold climates, solar gain can exceed losses through highly insulating windows

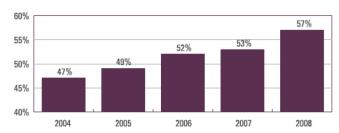
Annual Heating Cost simulated for a heating climate

Single Glazed w/Storm, \$1310

Double Glazed, \$1218

Double w/Low-E, \$1120

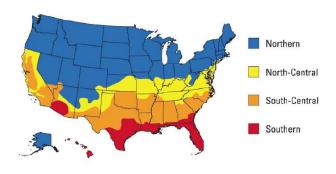
House with no windows, \$1000


"SuperWindow", \$960

Energy Star Program Enhancements

- Energy Star has helped push better technology to mainstream markets
- Complex program because of regional dependence
- Codes and Standards have surpassed EnergyStar- needs to be tightened
 - Market share is saturating in some markets- 2010 Tax Credits helped
 - Incremental or disruptive changes re: product lineups
 - "Most Efficient" alternative?– top 5%
- New Options?: Promote Window Coverings/Solar Shading Attachments
- Dynamic/Operable systems
 - How to credit operator impacts

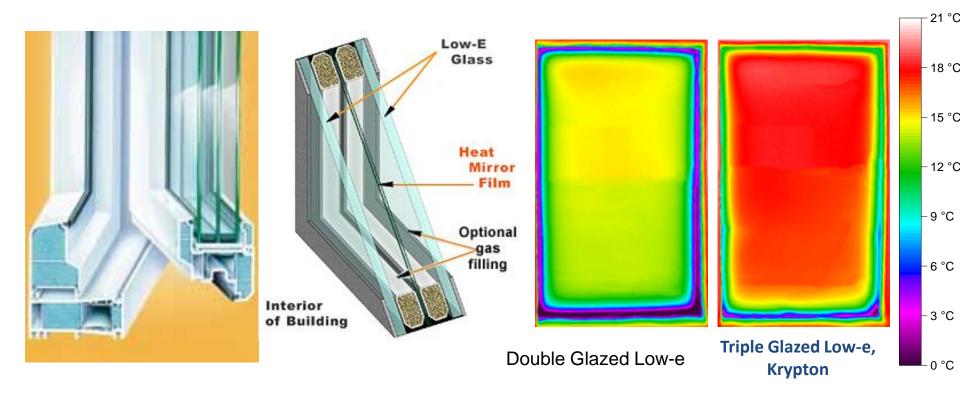
Figure 1. ENERGY STAR Market Share, 2004-2008



Source: ENERGY STAP 2009 http://www.opergystar.gov/is/partners/mapuf_ros/downloads/PartnerRosourceGuido LowRos adf

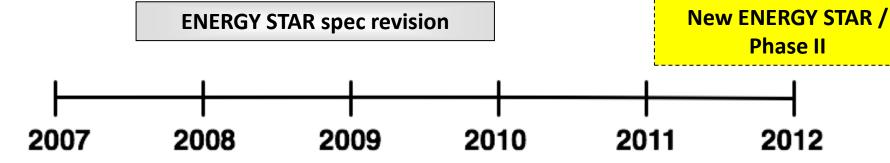
Table 1. Summary Results (simple average)

Table 1. Sullillary Results (Silliple average)							
ENERGY STAR Window Region	vs Metro Area	2010 % ENERGY STAR	2011 % ENERGY STAR				
North (East)	Milwaukee/Madison, WI	98%	99%				
North (West)	Portland, OR	89%	81%				
North-Central (East)	Washington DC	95%	91%				
North-Central (West)	San Francisco, CA	85%	76%				
South-Central (East)	Atlanta, GA	96%	93%				
South-Central (West)	Tulsa, OK	93%	91%				
South (East)	Jacksonville, FL	87%	80%				
South (West)	Houston, TX	99%	98%				
Average		93%	89%				


Figure 2. ENERGY STAR Windows Regions

Transforming Markets Toward Highly Insulating Windows

- Three panes or two panes and suspended film
- Substantially outperform ENERGY STAR criteria
- Present market share only around 2-3%


High-performance specs in LEED for Homes & NGBS

Production Engineering RFP – 50% Cost Share

Technology Procurement/Volume Purchases – Multifamily/Public Housing/Condo, Builders, etc

Develop advanced utility program specs

Utility programs for advanced windows

Insulating Windows: Building Systems Optimization Environmental Energy Technologies Division

A highly-insulating building envelope not only saves substantial energy... but can allow for up-front savings in HVAC system costs.

High-performance windows are a critical link in the Building Envelope

Windows Area: 30 m²

Incremental Cost

for R .9 Windows: *\$50/m²

Total Cost: \$1500

Cost: \$1500

Savings: \$1000

Total: \$500

6-12 yr simple payback

*Consumer price premiums are \$20-\$40 per sq m, but wholesale base cost to builders may he lower

200 m² Home

Reduced Duct Savings: \$450

Reduced HVAC Savings: \$550

Integrated R&D Program

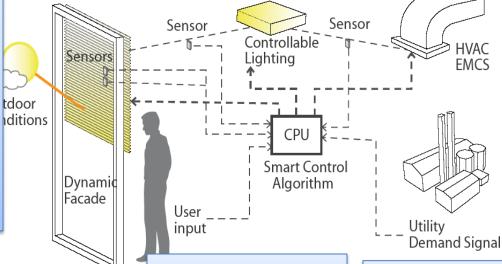
Environmental Energy Technologies Division

Advanced Facades and Daylighting:

Program Goals:

Net Zero Energy Balance for New and Retrofit

Enhanced View and Thermal Comfort


Reliable, cost effective operations

Tools to design, optimize, specify, control

Adoption/diffusion throughout industry

Advanced Technologies:

Sensors; Controls; Hi R windows, Cool coatings; Switchable coatings; Automated Shading; Daylight-redirecting Operable windows,

Human Factors:

Thermal comfort Visual comfort Satisfaction Performance

Business Case

Manufacturing
Installation
Commissioning
Reliability
Cost

Decision Tools Books, Guides Websites

Simulation Tools Testbeds

Application:
All climates

All Building types

New-Replacement-Retrofit

Program Activities:

Simulation

Optimization

Lab test

Field Test

Demonstrations

Standards

Partners

Manufacturers

Owners

Architects

Engineers

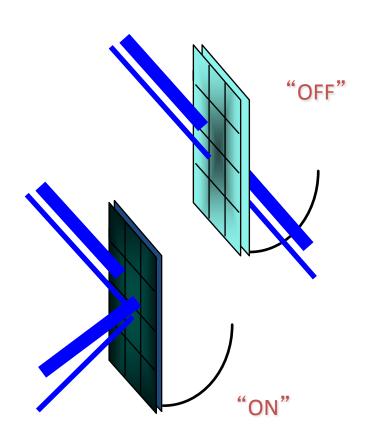
Specifiers

Code officials

Contractors

Utilities

Comparative Shading System Performance, Technologies Division



Smart Coatings for Windows Technologies Division Control Contr

Need Dynamic Control of Window Properties To Balance Cooling, Daylighting, Glare

- Flexible, optimized control of solar gain and daylight
- Passive control
 - Photochromic light sensitive
 - Thermochromic heat sensitive
- Active control
 - Liquid Crystal
 - Suspended particle display (SPD)
 - Electrochromic
- Active control preferred; but requires wiring windows for power and control

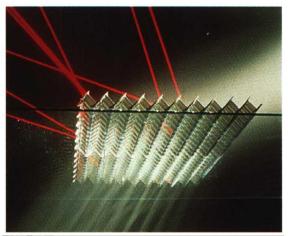
Progress with Electrochromic Windows Technologies Division

Early manufactured products in buildings now; New production facilities on-line in 2012 with larger, better quality at lower cost.

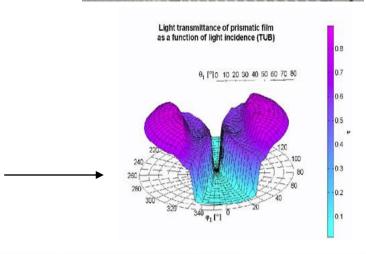
New Technology for Daylighting

- Better glare control
- Deeper daylight penetration

Conventional Options for Directional Control


- glass block
- fritted glass
- diffusers
- shading systems

New Options


- Special blinds
- Prismatic glazings
- Holographic materials
- Laser cut panels
- Light pipes
- Fiber optics
- Nanotech- dynamic coatings

Challenges

- Fabrication at affordable cost
- Durability, lifetime
- Characterize them how do they perform?

2010+: New Program Directions, Technologies Division

Expansion from residential to commercial research

- New R&D focus on daylighting since Lighting is major commercial load.
 Daylighting issues:
 - Lighting/cooling load tradeoffs
 - Manage intensity, control glare
 - Understand occupant behavior
 - Sensors, controls, systems integration
- NFRC program for rating commercial products
- New tools, websites for Commercial e.g. COMFEN

Expansion from "New" markets to "Retrofit"

- Different companies and new market pathways
- New systems: Windows → Attachments
- "Attachments" = blinds, shades, shutters, storm windows,....
- "How do they perform?"
- International Collaboration: ESSO- European Solar Shading Organization

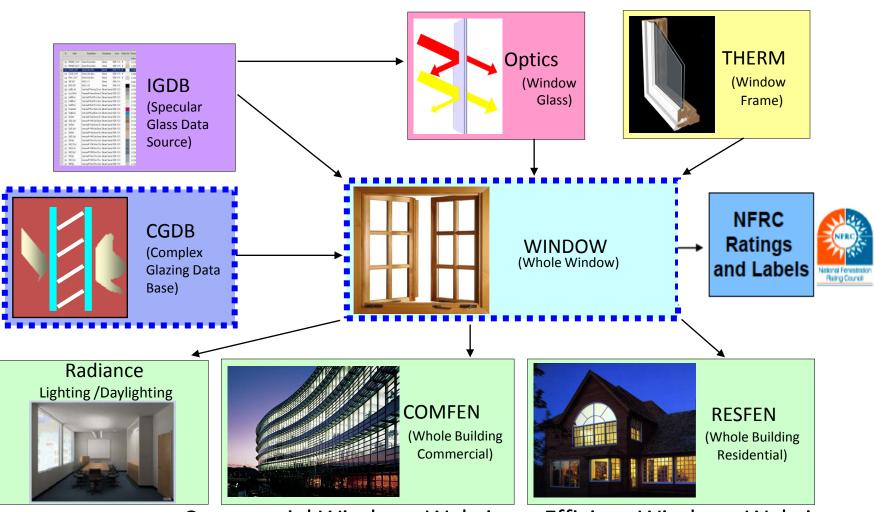
Major New Program Directions

New Investment in Technology R&D

- "High R" windows; Electrochromic glass and Automated Shading
- New activity, interest, opportunity in Daylight control

More Aggressive Partner Engagement in Deployment

- Tighter building codes and standards, tax incentives,...
- New Update for EnergyStar (may require triples in 2013)= Technology drivers
- Utility programs as partners, voluntary programs as market drivers
- New Market Pull from LEED and Green/Sustainable Design


New, Enhanced "Tools" for decision making

- Product Design: WINDOW, THERM, Optics, etc
- Façade Design: COMFEN
- Daylighting: Radiance
- Whole Building Design: EnergyPlus with new GUI

Glazing and Façade Decision Support Tools Division

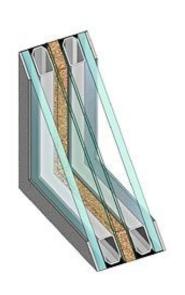
Download http://windows.lbl.gov/software/ FY10 ~ 37,000 Downloads

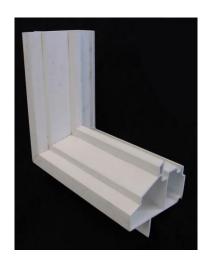
Commercial Windows Website

Efficient Windows Website

Design / Simulation Tools

Tools Support R&D and Deployment Environmental Energy Technologies Division


How are Tools Used?


- Design of new products
- Guidelines for Product Selection
- Energy Star Compliance and Analysis
- NFRC Ratings

Energy Star Map

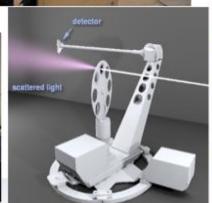
R&D: New Product Design

Product Selection Guidelines



NFRC Label

Glazing/Shading/Daylighting Measurement and Validation


Environmental Energy Technologies Division

Façade/daylighting test facility Integrated Systems testbeds Mobile Thermal Test Facility IR Thermography chamber

Large integrating sphere Optics laboratory

- Scanning Goniophotometer
- HDR Imaging
- Field Data Collection systems
- Commissioning systems

Virtual Building Controls Testbed Daylighting controls laboratory

Next Steps? Collaboration 12 Energy Technologies Division

- Enhanced deployment of Proven technology
 - Mandatory and voluntary programs
 - Ratings and Labels: Properties → Performance
 - Financing, Education, Training,.....
- Collaboration and Harmonization in a Global Era
 - Standards- ongoing issues- ASTM, ISO, CEN, ASHRAE, Green buildings
 - Collaborative R&D: IEA BCS/ SH&C Annexes, Tasks
- Collaborative R&D for Pre-competitive Topics? IP Challenges?
- Sharing Best Practice
 - Technology --- > Systems, Building Practice
 - Design → Construction → Operations
 - Measured Data
- Example: Solar Shading collaboration
- Examples: Windows and Integrated Building Systems
 - Extracting best performance
 - Measuring impacts → System Tradeoffs, e.g. better windows → smaller HVAC

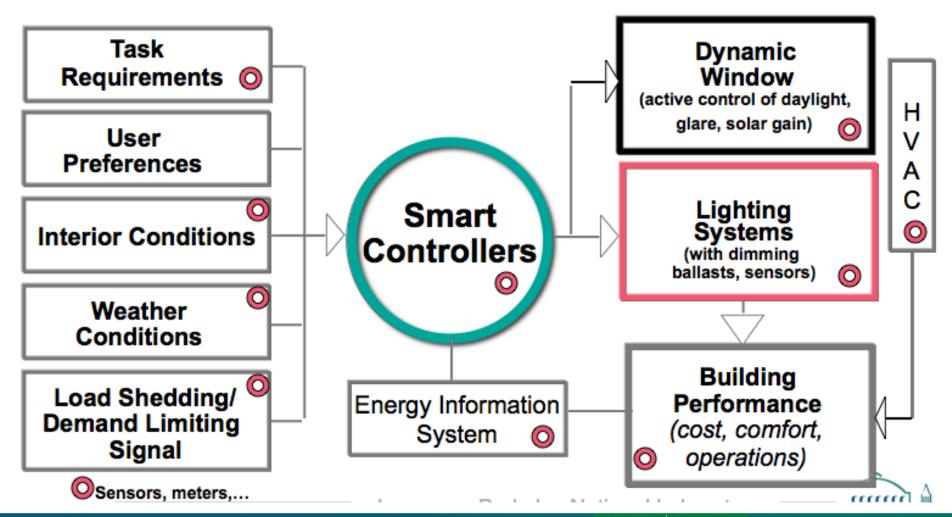
U.S.: New Window Retrofit Initiative Energy Technologies Division

Context

- New Construction: Slow stock turnover; worse with recession
 - Renovation/Additions adds "new" windows
- Window Retrofit/Replacement rarely done for "payback"
- Large, thriving, fragmented industry "window attachments"
 - Focus is privacy, fashion, comfort...... sometimes Energy
- Global interest- Europe is driver, established markets
 - External Shading is Common practice without AC
 - Collaboration with European Solar Shading Organization
 - Potenial IEA Annex?
- Lack of "accurate" tools to characterize products and performance
 - Utilities cannot launch incentive programs if they can't estimate savings

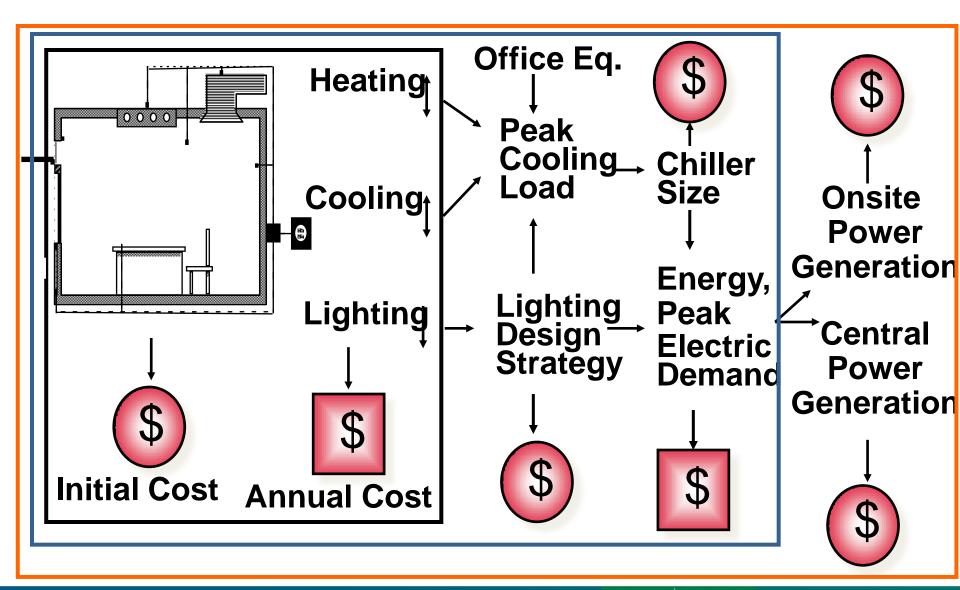
Opportunity

- Harness latent industry interest to focus on energy efficiency
- Dual program: "Applications Now"/"Innovation tomorrow"


Needs/Scope

- "Applications Now"
 - Tools, guides to characterize products; select best/better solutions (smart phone)
 - · Channel, marketing program
- "Innovation Tomorrow"
 - New materials
 - Automated control/integration

Exploring Intelligent Control Systems Technologies Division



Maximum performance requires full integration with building systems

System Integration: Investment Tradeoffs Environmental Energy Technologies Division

Accurate, Objective Performance Data LBNL's National User Testbed Facility

Environmental Energy Technologies Division

Commercial Building Integrated Systems testbeds: Envelope, Lighting, Plug Load, HVAC interactions (w/ and w/o occupants)

Construction: 2012 Operations: 2013

5 New Façade Testbed Facilities

- Multiple comparative experiments
- •Interface with public and private test sites
- •Link and share experimental data sources
- Objective, "third party" data
- •What works? How well? Why? Why Not?
- Integrated building systems performance
- Occupant behavior and energy impacts
- Validation of design tools