UK National Quantum Technology Hub in Sensors and Metrology

Prof. Kai Bongs, University of BirminghamBlue Sky WorkshopIEA Committee on Energy Research and Technology15 June 2017

UK National Quantum Technologies Programme

- A five-year £270M programme announced by the UK government in the 2013 Autumn statement.
- Programme started October 2014.
- To exploit the potential of quantum science and develop a portfolio of emerging technologies with the potential to benefit the UK.
- Industry, government and academia working together to create opportunities for UK wealth creation.

The "Valley of Death"

UK National Quantum Technology Hub Sensors and Metrology **UK** National

What is "Quantum"

https://en.wikipedia.org/wiki/Max_Planck #/media/File:Max_Planck_1933.jpg

Planck postulate: electromagnetic energy could be emitted only in quantized form

E=hv

Quantum Waves

By Kurzonddddd (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons By This file was made by User:Sven (http://creativecommons.org/licenses/by -sa/3.0/), CC BY-SA 2.5-2.0-1.0

Light-Atom Interactions

Source: http://iff.physik.unibas.ch/~florian/rabi/rabi.html

What we do: Atoms manipulated by laser light

Also possible: rotation, time, magnetic fields,...

UK National Quantum Technology Hub Sensors and Metrology

The Atom: a Perfect Probe Particle?

- Always made the same by nature
- "Point-like"
- Well understood energy levels and interactions
- Can be precision manipulated by laser light
- But: need to be controlled, in order to allow interrogation

UK National Quantum Technology Hub Sensors and Metrology

Laser cooling

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

S. Chu

C. Cohen-Tannoudji

W.D. Phillips

1. photons have a momentum and transfer it to an atom upon excitation

- 2. Atoms absorb photons on narrow resonance lines
- 3. The Doppler effect causes unanvelocity dependence TECHNOLOGIES PROGRAMME

Laser cooling

The Nobel Prize in Physics 1997

"for development of methods to cool and trap atoms with laser light"

S. Chu

C. Cohen-Tannoudji

W.D. Phillips

Atom Interferometer Accelerometer

"Matter Wave Picture"

Measuring Gravity

 $\Delta \Phi = k_z T^2 g_z = 2\pi \frac{\Delta z}{\lambda}$

➔ Dropping the atom next to a laser ruler

Accelerometer Operation

Activities and Links

Gravity Imager Impact Potential

Image: Quantum Blackett Report:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/564946/gs-16-18-quantum-technologies-report.pdf

Market Example WP11: QT Gravity Gradient Sensors for Underground Mapping

UK cost of digging up the roads : £5bn/yr

UNIVERSITYOF

BIRMINGHAM

RSK

UNIVERSITY^{OF} BIRMINGHAM

We don't really need better gravity sensors...

Gravity Gradiometer

Cold Atom Gravity Gradiometer

COLD ATOM TECHNOLOGY INTIRSICALLY REALISES THE PROMISES OF GRAVITY GRADIOMETERS

Idea: Simultaneously interrogate two atoms at different height using the same laser ruler

 → "perfect" suppression of acceleration due to "infinitely" rigid coupling (140dB demonstrated by Kasevich group)

→ "perfect" alignment of gravimeter measurement axes (necessary for reduced tilt sensitivity)

Does QT Work?

- 10M cases of dementia each year worldwide
- Worldwide cost >£500bn/year (>1% GDP)
- QT for mobile monitoring and treatment

Tests in MEG application

 3d printed head cast enables fixed position direct comparison of OPMs to conventional SQUID sensors

Market Example WP6:

Some initial tests using a commercially available optical atomic magnetometer

- 5-fold increase in Signal-to-noise
- Example of temporal response to median nerve stimulus

UK NATIONAL QUANTUM TECHNOLOGIES PROGRAMME

Kindly provided by University of Nottingham, Peter Kruger and Matt Brookes

QT Game Changers Healthcare

MEG helmet operating in natural environment

Cost ~£20k

 QT MEG could provide early diagnosis methods for dementia, opening up effective treatment

Potential Uses of QT in Energy?

• Gravity for monitoring of geophysics changes:

- carbon storage
- Shale gas and oil

Down borehole gravity gradiometers

Potential Uses of QT in Energy?

Cocks for height referenced to Earth potential "Relativistic Geodesy"

Vermeer, Rep. of the Finnish Geod. Insti. 83, 1 (1983) Bjerhammar, Bull. Geodesique 59, 207 (1985)

Potential Uses of QT in Energy?

Subsea navigation with Gravity Gradient map matching?

2013 American Control Conference (ACC) Washington, DC, USA, June 17-19, 2013

Modeling Earth's Gravitational Gradients for GPS-Free Navigation[†]

Troy C. Welker,¹ Richard E. Huffman, Jr.,² and Meir Pachter³

Simulate aircraft with 300m/s at 5km height and a 4mE sensor → below 10m deviations after 1hr.

Thank you for listening

