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The Climate Change Mitigation Context 

IPCC AR5:  

Achieving 2C is still 

possible, but it entails 

huge contributions from 

bioenergy - in most 

scenarios combined with 

Carbon Capture & Storage 

to go “negative“. 
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Source: Fuss et al. (2014), Nature Climate 

Change. 



How can we go (net) negative? 

• The technology most widely used in climate stabilization 

scenarios of AR5 is Bioenergy combined with CCS 

(BECCS). 
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Source: Applied Energy Handbook, Wiley. 

Other technologies: 

• Afforestation 

• Direct air capture 

• Increases in soil carbon 

storage (biochar…) 

• Etc 



Important notes on alternative options 

Land-use and management changes: 

• Saturation of CO2 removal over time 

• Sequestration reversible (terrestrial carbon stocks 

inherently vulnerable to disturbance) 

 

Geo-engineering options: 

• Quicker and cheaper to ramp up 

• Embody a much larger scale of mostly unknown risks 

• Not able to deal with other consequences of increased 

CO2 concentrations such as ocean acidification 
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The Extent of BECCS Use in IPCC 

Scenarios 

• 101 of the 116 430-

480ppm scenarios rely 

on BECCS. 

• About 67% of these 

have a BECCS share 

in primary energy 

exceeding 20% in 

2100. 

• BUT: many 

uncertainties remain. 

Can we really bet on 

BECCS? Source: Fuss et al. (2014), Nature Climate 

Change. 



The challenge 

• Huge and rapid up-scaling: requirement for BECCS is 2-

10 Gt CO2/yr in 2050, i.e. 5–25% of 2010 CO2 emissions 

and 4–22% of baseline 2050 CO2 emissions (cf. current 

global mean removal of CO2 by ocean and land sinks is 

9.2 ± 1.8 Gt CO2 and 10.3 ± 2.9 Gt CO2, respectively. 

• Safe storage needed in addition to CO2 storage from 

fossil CCS, which is also behind schedule in terms of 

upscaling 

• Balance with other land- and biomass uses under 

uncertainty of potentials: 100-300 EJ/yr^-1? 

• Responses of natural sinks could offset part of the NE 

effect 

• Costs and missing incentives; no global governance 

framework 

• Both bioenergy and CCS unpopular in different countries 
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Four dimensions of uncertainty 

1. Physical constraints on BECCS 

a. Sustainability of large-scale deployment relative to 

other land and biomass needs (food security), carbon-

neutrality of bioenergy 

b. Presence of safe, long-term storage capacity for 

carbon;  

2. Response of natural land and ocean carbon 

sinks to NE;  

3. Costs and financing of an untested technology; 

4. Socio-institutional barriers, e.g. public 

acceptance of new technologies and the 

related deployment policies 7 



A new transdisciplinary research 

agenda 

1. Examine consistent narratives for the potential 
of implementing and managing negative 
emissions 

2. Estimate uncertainties and feedbacks within the 
socio-institutional, techno-economic and Earth 
system dimensions 

3. Offer guidance on how to act under the 
remaining uncertainties. 

 An agenda to be realized under the new Global 
Carbon Project initiative MAnaging Global 
Negative Emissions Technologies (MAGNET). 
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The four components of consistent NE 

narratives  
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Source: Fuss et al. (2014), Nature Climate 

Change. 



Current activities/Outlook into the near 

future 
1. Interaction with other land-based mitigation strategies such 

as REDD+ 
o Increased pressure on forests and other resources, but also: 

o Team up with REDD+ efforts to certify sustainability of biomass feedstock for 
BECCS (so that we really achieve negative emissions) 

o Integrated REDD+BECCS strategy to help raising private sector finance by 
introducing broader scope for economic benefit. 

o BECCS could benefit from aligning with REDD+ in terms of public 
acceptance (both bioenergy and CCS unpopular in different countries). 

o REDD+ to buy time for more BECCS research and scaling it up. 

o However: both needed to achieve climate stabilization and implied tradeoffs 
(also with other objectives) need careful consideration. 

2. Systems view of negative emissions: water footprint? 
Fertilizer needs? 

3. Bringing together bottom-up research on potentials (e.g. 
collaboration with Indonesia and IEA and other regional case 
studies) with top-down requirements from IAMs. 
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