A look at incentive policies for BECCS

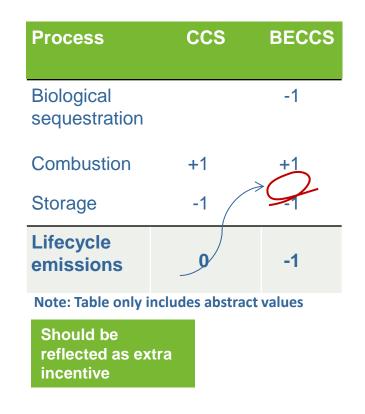
Wolfgang Heidug, PhD

Senior Analyst CCS Unit

> International Energy Agency

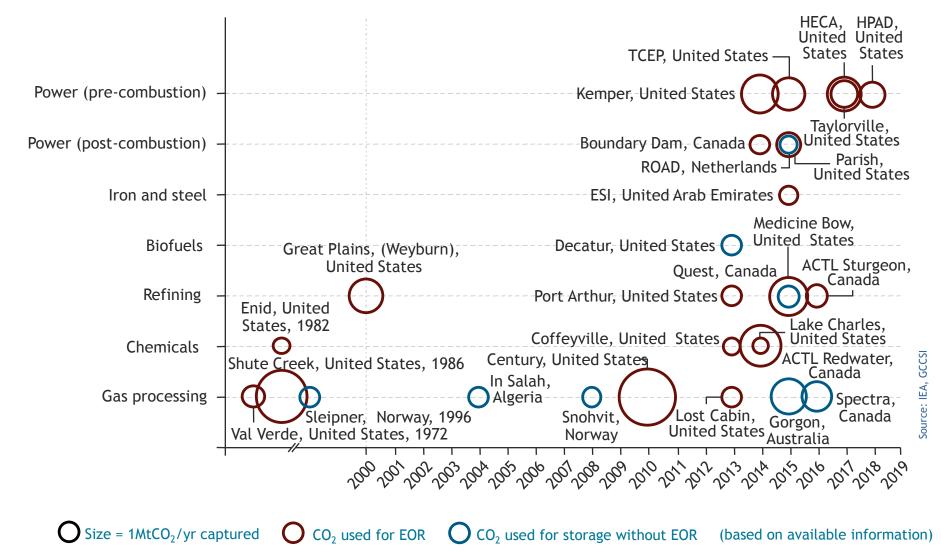
1ea

1ea


Bio-CCS can provide 'negative emissions'

Bio-CCS has the potential to <u>reduce</u> atmospheric concentrations of CO₂

 CO₂ sequestered from air as biomass grows is not returned to atmosphere


→ sustainability needs to be ensured

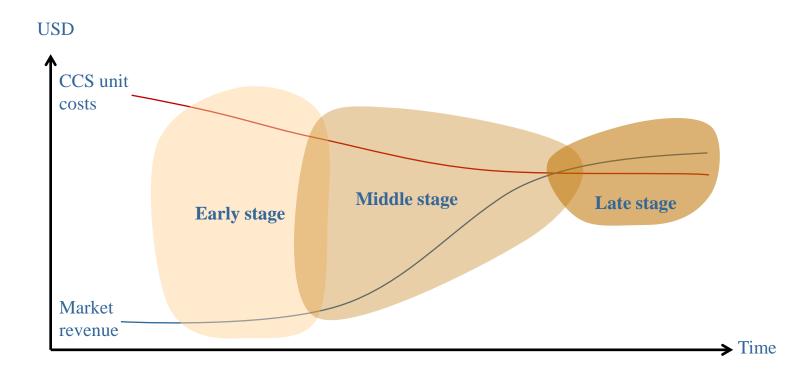
 may well be needed for climate stabilisation, in particular looking <u>beyond 2050</u>

162

Large-scale projects moving ahead

Source: Rob Finley, Midwest Geological Sequestration Consortium, University of Illinois, USA

International Energy Agency


> Operational Injection: 17 November 2011

- IBDP fully operational 24/7
- IBDP is <u>the first 1 million tonne</u> <u>carbon capture and storage project</u> <u>from a biofuel facility in the US</u>
- Injection through fall 2014
- Intensive post-injection monitoring under MGSC through fall 2017
- Cumulative Injection (10 June 2013): 504,900 tonnes

International

iea

The starting point: Economic characteristics of CCS technology will change with time

iea

Markets failures produce outcomes that are not socially optimal

Market failure as rationale for intervention

Market failure

Example policies

Regulation

Emissions externality

Failure to internalise the cost of scheme greenhouse gas emissions

Public good

Failure to appropriate returns generated by investments in innovation

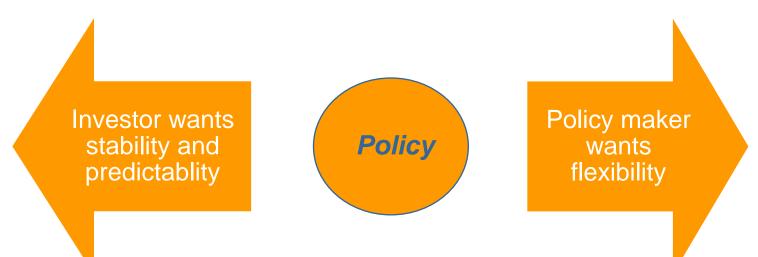
Underprovision of private capital resulting from imperfect information

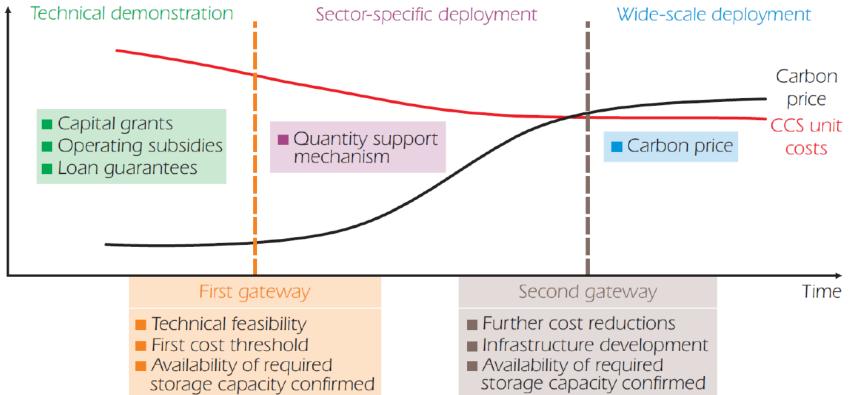
Complementary markets

Undersupply due to dependency on complementary markets and coordination failure

Carbon tax or emissions trading

Quantity-based instruments: feed-in tariff, portfolio standards


Risk and capital market failure Provision of debt/equity, grants, investment tax credits, insurance



The policy dilemma

- Change in the characteristics of CCS, and associated focus of incentive policy, creates a challenge for policymaking
 - on the one hand, want to be able to adapt and modify policy as technology changes or new information comes to light
 - on the other hand, the (perception of) changing policy may damage investment

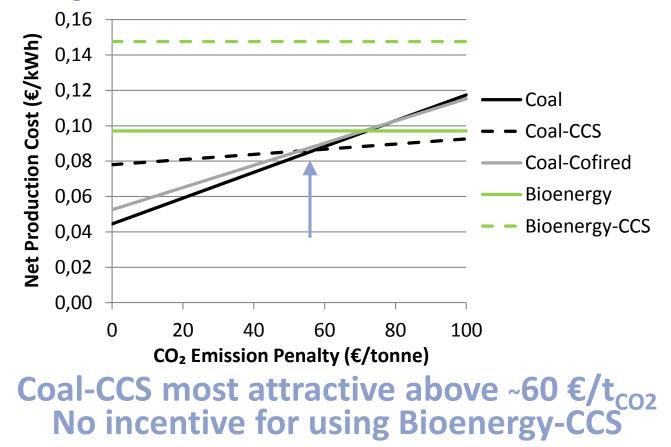
Possible Gateways within a CCS Policy Framework

Incentive mechanisms are specific to deployment stage

Decarbonising electricity generation from coal

- Large-scale, commercial power generation
- **Cases analyzed:**
 - Coal without CCS (Coal)
 - Coal with CCS (Coal-CCS)
 - Bioenergy without CCS (Bioenergy)
 - **Bioenergy with CCS** (*Bioenergy-CCS*)
 - Coal co-fired with 30 % biomass with CCS (Coal-Cofired)

Instruments analyzed

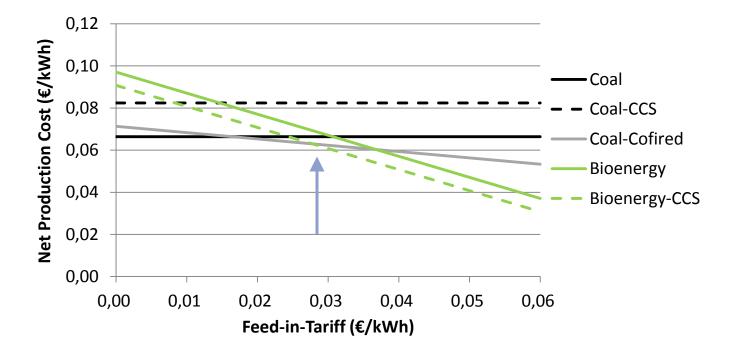

- CO₂ Emission Penalty per tonne of CO₂ emitted (as used in CO₂ Cap and Trade Scheme or CO₂ Tax)
- Feed-in-Tariff per kWh produced using biomass and/or CCS
- Additional BECCS-specific mechanisms:
- Bonus for negative emissions
- Feed-in-Tariff for using BECCS

Impact on net production cost analyzed

162

Costs and emission penalty

- CO₂ emission penalty for coal power emissions
- No feed-in-tariff
- No negative CO₂ emission bonus


Costs and feed-in tarif

- CO₂ emission penalty for coal power emissions at 30 €/tonne
- Feed-in-tariff for using biomass

International Energy Agency

1ea

Negative CO₂ emission bonus for BECCS (of same value as CO₂ emission penalty)

Bioenergy-CCS most attractive above ~2.8 €-ct/kWh Strong incentive for using Bioenergy-CCS International Energy Agency

iea

Summary of Results

Sce- nario	CO ₂ Emission Penalty	Feed-in- Tariff	Negative CO ₂ Emission Bonus	Most economic low-CO ₂ emission option	Inventive for using BECCS
1	For coal	-	-	Coal-CCS above ~60 €/t _{co2}	×
2	For coal	-	for BECCS	BECCS above ~40 €/t _{co2}	\checkmark
3	-	For CCS	-	Coal-CCS above ~2.5 €-ct/kWh	×
4	-	For biomass	-	Bioenergy above ~60 €-ct/kWh	×
5	-	For CCS and biomass		BECCS above ~6.5 €-ct/kWh	\checkmark
6	For coal (at 30 €/t _{co2})	For biomass	For BECCS (at 30 €/t _{CO2})	BECCS above ~2.8 €-ct/kWh	\checkmark

Conclusions

Today, neither conventional CCS nor BECCS are competitive

International Energy Agency

- A CO₂ emission penalty alone does stimulate conv. CCS but not BECCS
- A feed-in-tariff for using CCS reduces costs of conventional CCS and BECCS, but conventional CCS always remains more attractive
- A feed-in-tariff for using biomass reduces costs of conventional bioenergy and BECCS, but bioenergy without CCS always remains more attractive
- A combined feed-in-tariff for CCS and biomass would incentivize using BECCS
- An additional bonus for negative CO₂ emissions would effectively incentivize using BECCS (at comparably low €/t_{CO2})

iea

Thank you

wolf.heidug@iea.org

www.iea.org/ccs