BECCS applied in existing industries

Bio-energy, CCS and BECCS: Options for Indonesia Jakarta, Indonesia, 21-22 September 2012

Stefan Grönkvist Royal Institute of Technology, KTH

Costs in the CCS chain (coal condensing power)

€ / tonne avoided

Assumption

- CO₂ capture rate of 90-92%
- CCS efficiency penalty of 7-12% points
- Same utilization as non-CCS plant (86%)
- CO₂ compression at capture site
- Transport through onshore/offshore pipeline network of 200/300 km in supercritical state with no intermediate booster station
- Use of carbon steel (assumed sufficiently dry CO₂)
- Injection depth of 1,500 m in supercritical state
- Use of carbon steel (assumed sufficiently dry CO₂)
- Vertical well for onshore/ directional for offshore

Deductions from most estimates of costs in the CCS chain

- •The most costly link in the CCS chain is likely to be carbon capture
- Reduced costs for carbon capture will have an impact on the competiveness of CCS as a method for the abatement of GHG emissions

Transport

Capture

Low hanging fruits for carbon capture

Specific costs (OPEX) for avoided CO₂ emissions

- Upgrading (sweetening) of natural gas
- Ethanol production (fermentation part)
- Thermal bio methane
- Anaerobic digestion (sometimes)
- Hydrogen/ammonia production
- Fischer-Tropsch synthesis
- IGCC
- Blast furnaces (top-gas recycling, biomass is possible)
- Industrial processes with high amounts of waste heat (> 120°C)
- Mineral processes (cement kilns, biomass is possible, lime kilns)
- Power production in CHP mode (oxyfuel power production)
- Combustion processes without CHP mode

Low

High

Share of CO_2 emission sources above over 100 ktonnes annually in the world

Global large stationary CO_2 sources with emissions of more than 0.1 MtCO₂/year

Process	No. of sources	Emissions (MtCO ₂ /yr)
Fossil Fuels		·
Power (coal, gas, oil and others)	4,942	10,539
Cement production	1,175	932
Refineries	638	798
Iron and steel industry	269	646
Petrochemical industry	470	379
Oil and gas processing	N/A	50
Other sources	90	33
Biomass		
Bioethanol and bioenergy	303	91
Total	7,887	13,466

Share of CO_2 emission sources above 100 ktonnes annually in Sweden

Source: ÅF 2008, data from 2006

Total global CO_2 emissions from production of chemical pulp and ethanol

Source: FAO for production data together with estimates of specific CO₂ emissions

Global and Indonesian bioethanol production

Source: FAO and USDA

Annual chemical pulp production in Sweden and Indonesia

Source: FAO

The total CO_2 emissions from Indonesian kraft pulp mills were approximately 16 Mt CO_2 per year (2010 and 2011, 90 % biogenic origin)

"Asia Pulp and Paper (APP) is actively developing a large BHK market pulp mill to be located in south Sumatra. Details are not finalized, but the mill is expected to have a nominal capacity of between 1.5 and 2.0 million tonnes per year of BHK, making it the largest single pulp line in the world." (RISI, Febr 2012)

>This plant will generate 4-6 Mt CO_2 annually

CO₂ emission sources in Southeast Asia, total 330 Mt/yr (pulp production is missing)

Source: GLOBAL INDUSTRIAL CCS TECHNOLOGY ROADMAP, Geogreen/UNIDO

CO₂ emission sources in Indonesia

CO2 Emission Sources	\bigcirc	Downstream Oil and Gas (Refineries)	Emi	ssion Scale (mt)
fom IEAG HG 2008	۲	Cement	CO2	_mt
High Purity CO2	0	Iron & steel	٠	< 1
😑 Biomass	0	Power	•	1 - 5
				> 5

 $\textbf{Source:} \ \textbf{GLOBAL INDUSTRIAL CCS TECHNOLOGY ROADMAP, Geogreen/UNIDO}$

"Hotspots" for industrial CCS in Southeast Asia

Source: GLOBAL INDUSTRIAL CCS TECHNOLOGY ROADMAP, Geogreen/UNIDO

Clusters with emission sources – in total more than 300 million tonnes of CO_2 annually

Source: ÅF, Chalmer's Data Base, Swedish Forest Industries, Finnish Forest Industries

Potential geological CO₂ storages

Source: Chalmer's Data Base, SGU

BECCS may be cost-effective in comparison with other applications for CCS

- In several processes for conversion of biomass to transportation fuels, there are steps where CO₂ should be removed from the product stream
- CO₂ concentration in dry flue gases is higher than for fossil fuels
- Oxyfuel combustion may be efficiently applied on some processes that emits CO₂ of biotic origin

CO₂ concentrations in dry flue gases from different fuels

Carbon capture by oxyfuel combustion

Combustion process	Fuel	"Oxygen efficiency" [mole CO ₂ /mole O ₂]
Gas turbine	Natural gas (methane)	0.50
Coal condensing power	Coal (sub-bituminous)	0.86
Lime kiln	Fuel oil	2.00
Cement kiln	Coal	2.50

Carbon capture by oxyfuel combustion

Carbon capture by oxyfuel combustion in a lime kiln

A biofuelled lime kiln at a kraft pulp mill

A biofuelled lime kiln at a kraft pulp mill

A rotary cement kiln in Sweden

Carbon capture by oxyfuel combustion

Fuels used in a the largest cement plant in Sweden (> 2 Mt cement /yr)

	Coal	Petcoke	Rubber	Plastics,	Meat and		
			(tyres)	paper and	bone meal		
				biomass			
1989	60 %	40 %					
1994	50 %	30 %	20 %				
1999	Plastic materials are introduced as fuel						
2001	Meat and bone meal is introduced as a fuel						
Today	30 %	20 %	20 %	25 %	5 %		