Biomass Availability and Identification of Feedstock Potensial in Indonesia

Bio-energy, CCS and BECCS : Options for Indonesia UKP4 jakarta 21 – 22 september 2012

Bambang Prastowo

bprastowo@gmail.com

Indonesian Center for Estate Crops Research and Development Ministry of Agriculture

2012

INTRODUCTION

- Biomass → solid and liquid biomass
- important biomass agric. residues and used in traditional/modern application
- biomass from rural and urban resources
- it is important to define source of biomass before calculating the potency → criteria is needed

INTRODUCTION

- rural sector solid biomass:
 - only → crops residues → agric/forest residues
- criteria: direct+indirectly do not disturb food security and environment

POTENSIAL SOLID BIOMASS

- Food crops : → food security
 - > rice : only the husk, straw are for animal feed
 - > corn : only corncob, leaves are for animal feed
 - > sugar cane : only bagasse, cane top are for animal

feed

- Estate crops : → environment consideration
 - > ruber : only small log from replanting
 - > palm oil : only EFB (half for compost/organic
 - fertilzer), shells bark are for animal feed
- Forest : → waste only, log cutting, saw
 - timber, wood industry

Land Suitability Map for Energy Crops in Indonesia

Land Suitability Map for Jaropha Curcas in Indonesia (1:1.000.000)

Technical Energy Potensial of Efective Solid Agriculture Biomass 2010

		Planted	Potency Energy	Technical
		Area***) (x	X 100	Energy
Efective Residues		1000 Ha)	MJ/Ha/Year *)	Potensial mill
				GJ/year
Palm Oil	Fruit empty bunches	8,430	32,8****)	138.3
	Palm shell		6,5	54.8
Coconut	Shell	3,808	9,6	17.5
	Fibre		12,7	23.2
Ruber	Small log	3,445		36.3 **)
Sugar	Bagasse	448	288,8	129.8
Rice	Husk	12,147	11,8	143.3
Corn	Cob	4,131	17,3	71.5
Technic	614.6			

Note: *) ITB

^{**)} Rostiwati Silvi, Ministry of Forestry, 2011, calculated based on ZREU (2000)

^{***)} Ministry of Agriculture (2011)

^{****)} Assumed that 50% of empty fruit bunches is for organic fertilizer (compost)

Technical Energy Potensial of Efective Solid Forest Biomass 2010

Efective Biomass Residues	Year Period		dues on/Year)	Techinical Energy Potensial (mill GJ/year)
Log cutting				
Residues	Managed Forest			
	1998 – 2004	2.3		15.643
	2005 – 2010	1.9	1	
		Average	2.105	
	People Forest			
	2000 – 2010		1.6	
		Total	3.705	
Saw timber	2006 – 2010	4.2		42
Wood industry	2006 – 2010	7.86		83.84
Technical Energ	gy Potensial of Soli	d Forest	Biomass	141.483

Technical Energy Potensial of Solid Biomass In Indonesia 2010

No	Solid Biomass Residues	Technical Energy Potensial of Solid Biomass (Mill GJ/Year)
1	Agriculture	614.6
2	Forestry	141.483
Total Energy Bior	756.083	
DIUI	(470 in 2000 !!)	

Potensial Liquid Biomass

1. Biodiesel

Palm Oil (more than enough for supporting national target)

2. Bioetanol

sugarcane and cassava (not enough feedstock for supporting national target) . . . dedicated area ?

Potensial Crops for Liquid Biomass

- Jatropha curcas ... new variety available
- Candle nut ... new variety available
- Sugar Palm 47,763 ha ... new variety available
- Sago 1,5 juta ha ... food competition

New jatropha curcas high yielding seed

IP - 1M Muktiharjo

Jatropha Curcas High
Yielding Seed have been
Released in 2006, 2007, 2008
(4-6 t/ha & 6-8 t/ha & 10 t/ha)

- IP-1 A , IP2-A , IP-3 A for dry area,
- IP-1M ,IP-2M, IP-3 for medium dry area,
- IP-1 P, IP-2P, IP-3 for wet area

CONCLUSION (1)

Potensial Solid Biomass:

Palm oil : Empty fruit bunches and

palm shells

Coconut : Shell and fibre

Ruber : Small log

Sugar : Bagasse

• Rice : Husk

• Corn : Corncob

Forest waste: log cutting, saw timber

wood industry

CONCLUSION (2)

Technical Solid Biomass Energy

- Agriculture residues is 614.6 mill GJ/year
- Forest waste is around 141.483 mill GJ/year or
- Totally is around 756.083 mill GJ per year
- Solid biomass energy potensial are increasing along with production of energy crops in the last ten year, unfortunately its utilization is still very limited, that is around 3.25 %.

CONCLUSION (3)

Liquid Biomass Energy

- The actual readily feedstock (for liquid biofuel) from agriculture are mainly palm oil for biodiesel, sugarcane and cassava for bioetanol
- The nantional palm oil production recently is able to support the national target of biodiesel
- Otherwise, due to the lack of feedstocks, so the production of sugarcane and cassava are not able to support the national target of bioetanol usage

CONCLUSION (4)

There are other potensial crops that usually produce non solid biomass energy in Indonesia and grow scatterly with not so large planted areas such as:

- physic nut or jatropha curcas,
- "nyamplung" (Calophyllum Inophyllum),
- candle nut, and also sugar palm,
- cassava, sago and sorgum

Route of International Trade of Biomass Energy

Figure 7: Main International biomass for energy trade routes. Intra-European trade is not displayed for clarity. Source: Junginger and Faaij, 2008.

Bahan presentasi PT Solar Park Indonesia / Badan Litbang Kehutanan di Kemen Perekonomian, 22 Desember 2009

SUGGESTION

- The solid biomass energy should be utilized in the country where the biomass were taken, that mean, solid biomass export have to be stopped or at least minimized
- In the future, second generation biofuel have to be developed from the biomass to omit competition with food while this technology is being developed by researchers in Indonesia

