

BECCS status & gaps: Results from the IEA-IIASA Workshop on BECCS

Sabine Fuss (ESM, IIASA)

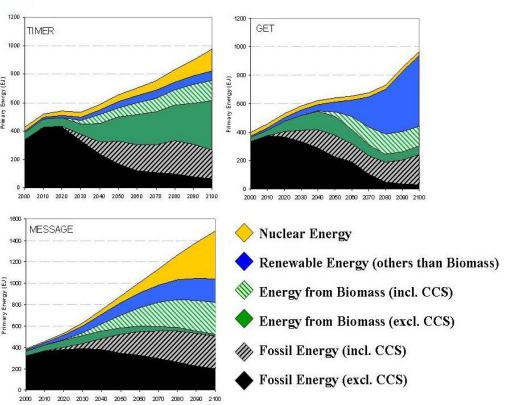
Bio-energy, CCS and BECCS: Options for Indonesia September 21-24, Jakarta

IIASA, International Institute for Applied Systems Analysis

2011 workshop objectives

- 1. Review status quo of BECCS knowledge and identify gaps
- Discuss policy context, possible
 incentive schemes and situation in
 case countries
- 3. Prioritize future research agendas

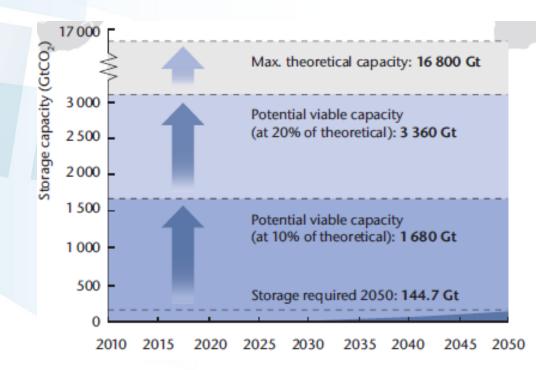
Status quo BECCS research


1400

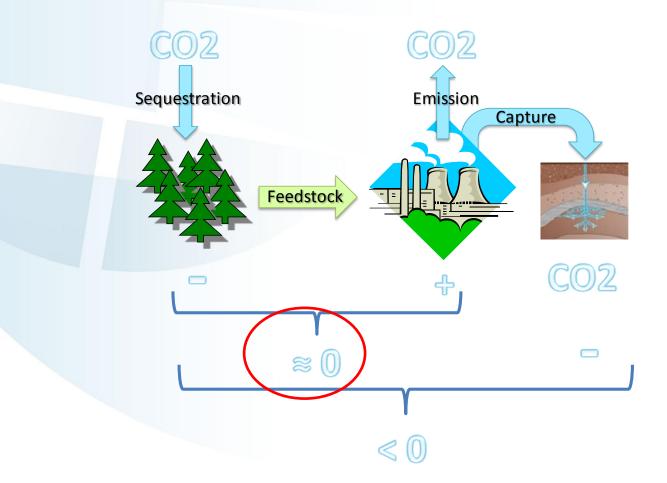
1200

800

600


- BECCS as a component of a wider mitigation 1000 strategy and different technical aspects, but huge uncertainties remain.
- Some work on policy context, energy scenarios (e.g. IEA).
- No comprehensive assessment of potentials

- 1. Biomass availability (local, regional, global)
- 2. Uncertainty about future biomass potentials
 - How much biomass can be sustainably used for bioenergy production?
 - Competition for land? Other policies?
 - How will biomass potentials look like under climate change (temperature, precipitation, etc)?



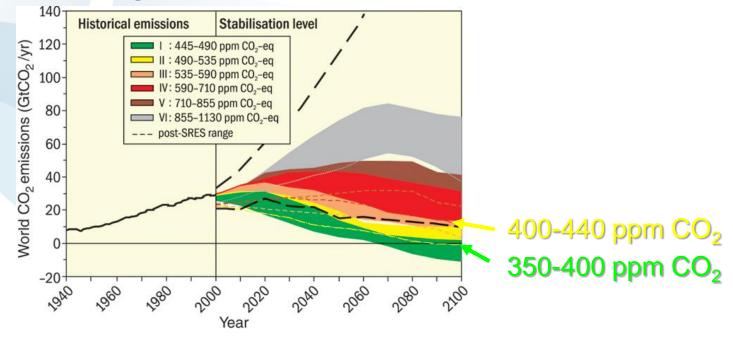
- 3. CCS costs
- Uncertain availability of secure storage capacity

World Storage Potential: IEA CCS Roadmap

5. Accountancy issues & GHG calculations

- 6. Lack of awareness
- 7. Public acceptance

- Not in my backyard effect (NL, Switzerland)
 BECCS vs. fossil CCS
- Impact of uncertainty



Expert recommen	dations for policy
Expert recommen	
Create price advantage for non-food competing biomass	Explore international funding mechanisms
 Decrease fossil fuel subsidies while supporting subsidies for sustainable bioenergy production on marginal land Reducing barriers to a global biomass market 	- CDM, NAMAs, REDD?
Support for demonstration projects	Accountancy issues: standardize international greenhouse gas accounting mechanisms
 Subsidies and other incentive mechanisms Stimulate capacity building, Governmental facilitating demos (bureaucratical hurdles, tax incentives, etc.) Risk guarantees 	-
Full-scale commercial projects	Bridging the science-policy gap
 Promote carbon market Portfolio standards and clarifying (% BECCS) Enhance international cooperation 	- Stakeholder engagement
Sustainability reporting should be mandatory	Storage capacity: IEA harmonization of assessment requirements and methodologies

Open BECCS issues: outcomes of the expert debate

- Overshooting
- Climate science assumptions

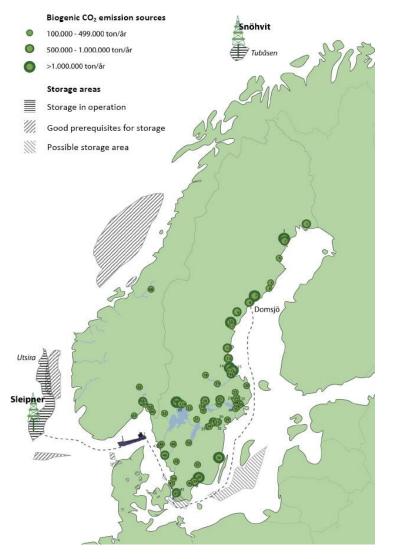
Timing issues

Open BECCS issues cont'd

- Lifecycle emission
- Incentive mechanisms
- Funding and costs
- Impact on health, the environment & public acceptance
- The role of BECCS in different technology contexts: a portfolio view
- Economic considerations (EOR? Abatement alternatives?)

Modeling approach to BECCS

- Caveat: BECCS might be an attractive option to reach low ppm levels, BUT uncertainties and system effects are largely disregarded so far.
- Important factors: economies of scale, technological learning, discount rates
- Integrated analysis to capture system and knock-on effects for bioenergy potentials.
- Systems view also at higher level: interplay with other technologies needs to be addressed


Identified research priorities

- Bioenergy from biomass production + CO2 capture
- Environmental aspects (sustainability, land use change)
- Logistics of production (geography, transport, storage, etc)

Regional focus: follow-up workshops

- Sweden (neighbors with storage potential, sustainable forest management)
- USA (EOR, geol. storage potential)
- Brazil (biomass, biofuels)
- Canada (EOR, EMP)
- China (biofuel demand, CCS)
- Indonesia (biomass, policy, bioenergy, offshore storage)

Identified research priorities

1. Bioenergy from biomass	s production + CO2 capture
Research needs	Key questions
A. biomass with CO2 capture affects the efficiency of power plants? Is there an additional energy penalty? Incremental penetration of biomass displacing coal	Traditional coal technology vs. gasification (pre combustion)
B. Given the different conversion technologies how can we proceed to implement BECCS (gasification, co-firing, fermentation)?	What are the technological and economic aspects of each technology?
C. Demonstration pilot projects	Small scale biomass based projects vs. collection of various large scale projects
D. Effect of flue gas composition in the CC unit	

Research priorities cont'd

2. Environmental aspects (sustainability land use change)		
Research needs	Key questions	
E. The Whole Picture – A 360 Degree View including Life cycle assessments (LCA). Necessity of including BECCS in LCAs and LCCs From a BECCS specific Framework	Which biomass feedstock in combination with CCS is qualified when we apply certain sustainability criteria?	
F. Consideration of environmental externalities and aspects	 What are the impacts on water consumption? Residues, ashes, closing cycles? Other air pollutants 	
G. Depending on the technology route some impacts are amplified, we need diverse pilot projects to understand the outcomes.	What is the difference in terms of public perception between BECCS and CCS? - Include multiple perspectives of stakeholders; different sorts of organizations	

Research priorities cont'd

3. Logistics of production (geography, transport, storage	e, etc)	
---	---------	--

Research needs	Key questions
H. Transport of the gas and (pipeline?) corrosion	What is the flue gas composition in terms of CO2, condensable gases, moisture?
I. Availability, timing	When is the reservoir available – it is better to keep a constant flow over the year when the CO2 is available – e.g. seasonal production in fermentation
J. Identify mismatches between expected CCS potential and storage availability	What are the implications of different BECCS location options (closer to cities, ag. regions, forests)?
K. Data availability: storage location, maps, global coverage, how deep, number and location of wells (access points)	
L. Centralized vs. decentralized BECCS (production to storage)	