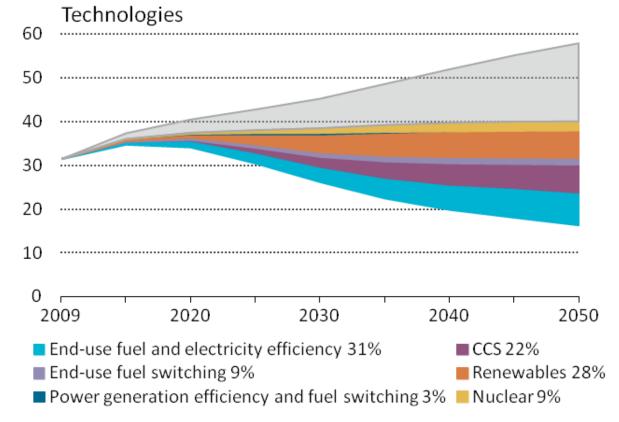
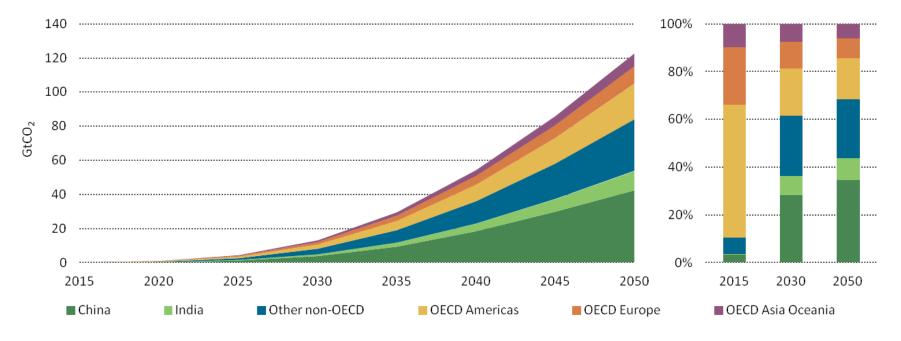

CCS: an option to reduce CO₂ emissions

Dennis Best Division for Asia Pacific/Latin America

Bioenergy, CCS and BECCS: Options for Indonesia, Jakarta, 21-23 September 2012

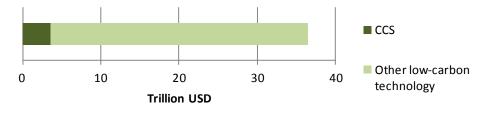

ETP2012: need to cut CO₂ by 50% by 2050

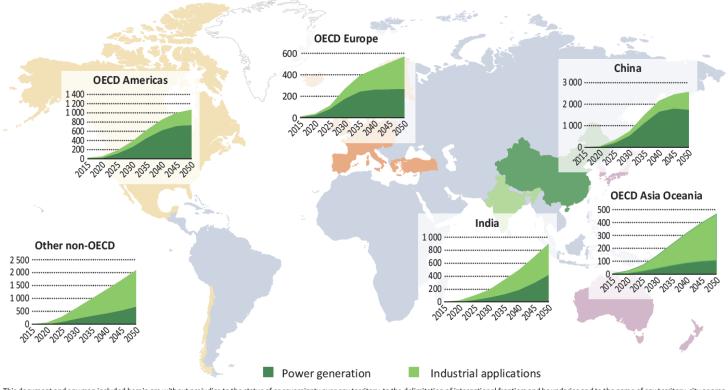
The technology portfolio includes CCS



Carbon capture and storage (CCS) contributes one-fifth of total emissions reductions through 2050

CCS must be deployed globally


- 2015-2050: almost 123 GtCO₂ captured and stored
- Non-OECD countries will dominate by 2030


Table 4.1	Investment requirements by sector in the 6DS and 2DS					
	6	DS (in USD trillior	ns)	21	DS (in USD trillion	ns)
Sector	2010 to 2020	2020 to 2030	2030 to 2050	2010 to 2020	2020 to 2030	2030 to 2050
Power	5.9	6.5	15.9	6.5	8.7	20.7
Buildings	3.2	3.9	9.1	6.2	6.9	14.7
Industry	2.8	2.3	4.4	3.1	2.7	5.4
Transport	(33.0) 7.0	(44.8) 9.9	(137.3) 32.5	(33.7) 8.1	(47.3) 12.5	(149.9) 44.4
Total investment	19.0	22.7	61.9	23.9	30.9	85.2
Notes: Industry includes iron and steel, chemicals, cement, pulp and paper, and aluminium. Transport includes the cost of the powertrain only; ful vehicle costs are shown in parentheses. Source: Unless otherwise noted, all tables and figures in the chapter deriver from IEA data and analysis.						
103.6 140						

- Investment requirements without particular clean energy goals are 103.6 trillion USD until 2050
- Investment requirements to reach 2DS scenario are 140 trillion USD until 2050
- Additional investment thus 36,4 trillion USD until 2050

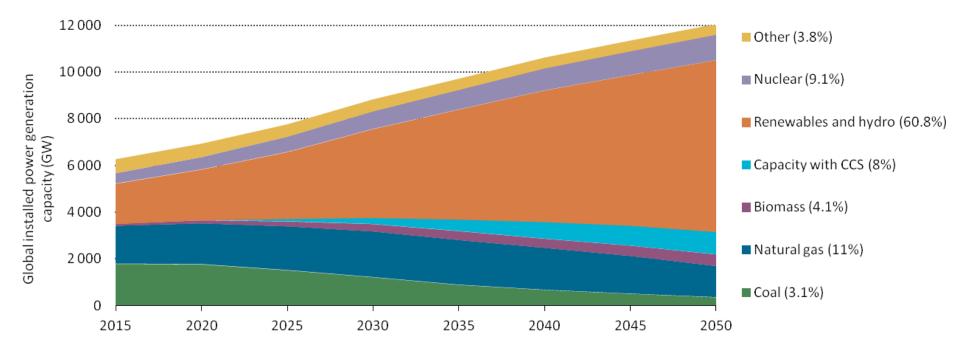
CCS accounts for roughly 10% of the required additional investment:

CCS is applied in power and industry

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Note: Capture rates shown in MtCO₂/year

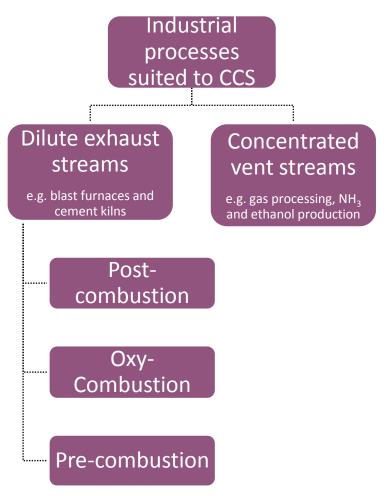
The majority of CO₂ is captured from power generation globally, but in some regions CO₂ captured from industrial applications dominates


Three CO₂ capture routes in power

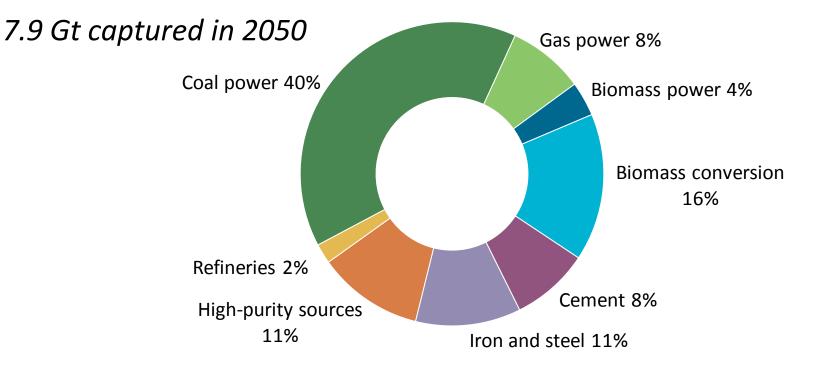
Post-combustion CO ₂ capture	 Fossil fuel or biomass is burnt normally and CO₂ is separated from the exhaust gas 				
Pre-combustion CO ₂ capture	 Fossil fuel or biomass is converted to a mixture of hydrogen and CO₂, from which the CO₂ is separated and hydrogen used for fuel 				
Oxy-combustion CO ₂ capture	 Oxygen is separated from air, and fossil fuels or biomass are then burnt in an atmosphere of oxygen producing only CO₂ and water 				

At the present time, none of the options is superior; each has particular characteristics making it suitable in different power generation applications

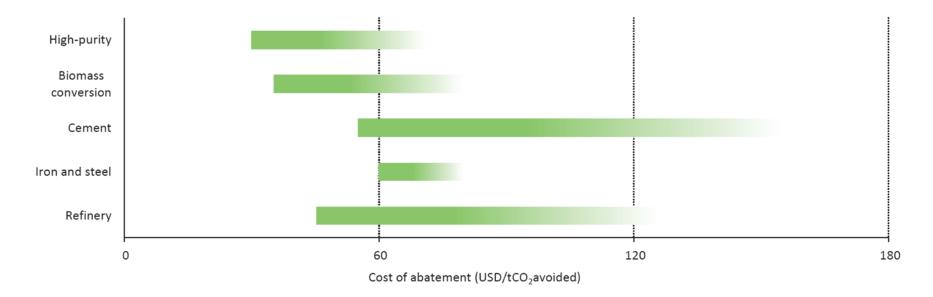
CCS is applied to coal, gas and biomass


In 2050, 63% of coal-fired electricity generation (630 GW) is CCS equipped, 18% of gas (280 GW) and 9% of biomass (50 GW)

Considering CCS in Industry

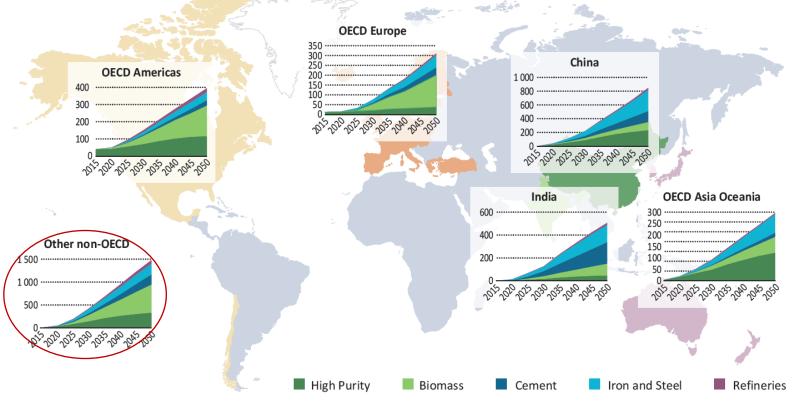

Industrial applications of CCS

- Some industrial processes produce highly concentrated CO₂ vent streams; capture from these "high-purity" sources is relatively straightforward
- Other industrial applications require additional CO₂ separation technologies to concentrate dilute streams of CO₂
- The same CO₂ separation technologies applied in power generation can be applied to industrial sources


CCS by sector: BECCS Options

Around 1.5Gt of CO₂ are captured at BECCS plants in 2050 in the 2DS.

Cost of CCS in industry varies widely



Notes: The range of costs shown here reflect the regional average cost of applying CCS in each sector, and, therefore, the overall cost of abatement in a sector will be affected by the assumed level of CCS uptake in each sector (IEA, 2009 and IEA and UNIDO, 2011). These costs include the cost of capture, transport, and storage, but do not assume that storage generates revenues – *i.e.* CO_2 storage through enhanced oil recovery (EOR) is not considered as a storage option.

A wide range of abatement costs through CCS exists in industrial applications

e

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

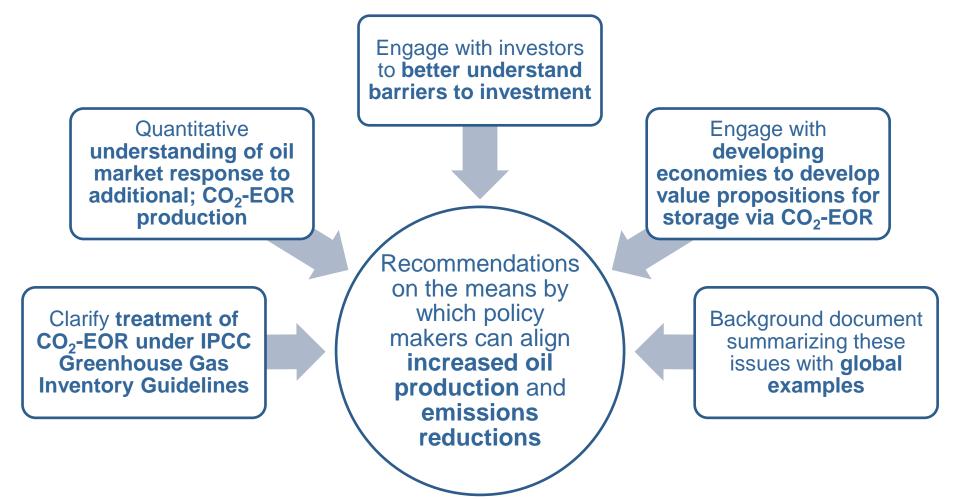
Note: Capture rates shown in MtCO₂/year

The predominant industrial application of CCS will vary by region and over time

Considering CO2-EOR

Considering CO2-EOR linked to CCS

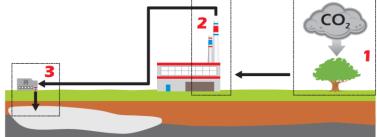
- CO2-EOR could reduce costs of CCS by supporting early opportunities for demonstration
- Under some circumstances, and accounting may lead to negative emissions in some cases
- There is limited potential for storage relative to power plant emissions .
- Must be considered in context of competing EOR technologies
- Only driver for CCS in absence of carbon price incentive



Barriers to private investment in CO₂-EOR

BAU CO2-EOR	CO ₂ -EOR for Climate Change Mitigation
 Low valued investment option in IOC portfolios Lack of low cost CO₂ for injection in many places Competition with other EOR processes Mismatch in business cases for capture versus injection 	 Those for BAU CO₂-EOR, PLUS: No return on additional cost for storage Cost for monitoring, measurement, and verification Cost for ensuring long-term containment

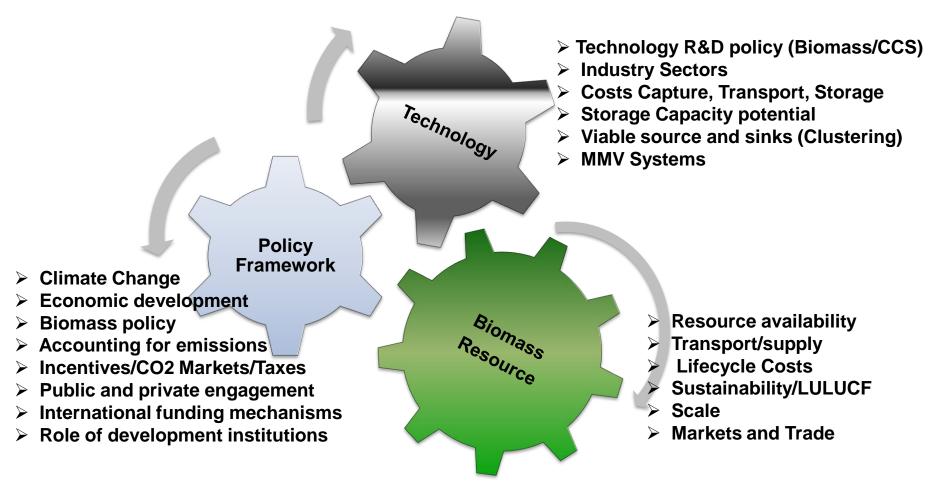
From issues to actions at the IEA: possible next steps



Considering BECCS

Negative emissions from BECCS By linking the Chain

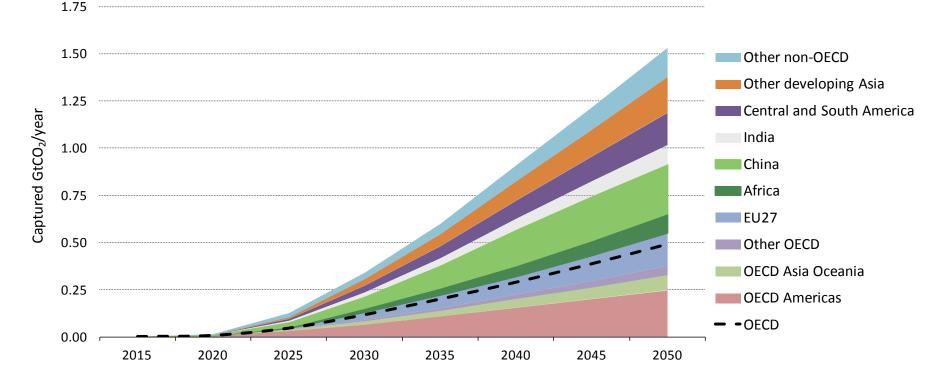
1. Biomass 2. Capture 3. Storage



- Bio-energy with carbon capture and storage (BECCS) can result in permanent net removal of CO₂ from the atmosphere, i.e. "negative CO₂ emissions"
- In BECCS, energy is provided by biomass, which removed atmospheric carbon while it was growing, and the CO₂ emissions from its use are captured and stored through CCS
- BECCS can be applied to a wide range of biomass conversion processes and may be attractive cost-effective in many cases

Biomass must be grown and harvested sustainably, as this significantly impacts the level of emissions reductions that can be achieved

BECCS – A Complex technology, resource and policy chain

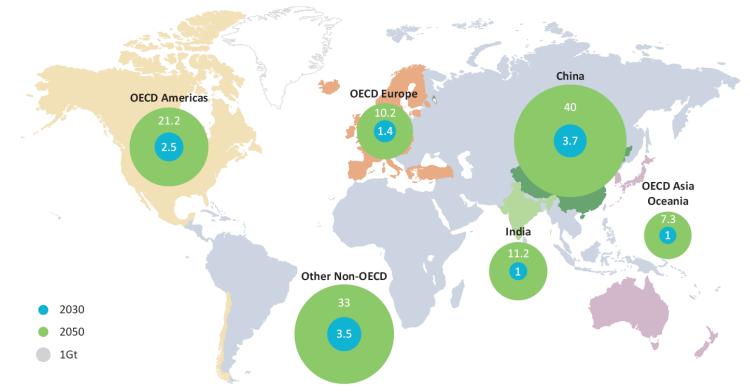


Considering Incentives for BECCS

- At point of combustion/fuel transformation, the same benefit is realised - prevention of CO₂ emission - and so whatever applies to CCS should also apply to BECCS
- An additional incentive should also be provided
 - Could be achieved through providing credits for biological sequestration of CO₂
- Cultivating, harvesting, transporting and processing of biomass all result in emissions that may reduce the emissions reduction potential of BECCS
 - Emissions from indirect land-use change as result of cultivating biomass need to be monitored
- These need to be accounted for to provide correct strength of incentives for BECCS

Regional breakdown of BECCS

Non-OECD regions account for two thirds of the CO₂ captured at BECCS plants in 2050.



Many policy & finance challenges

- Many industry sectors, no one-size-fits-all policy
- Government and industry awareness of CCS as a mitigation option needs a boost
- How can international finance mechanisms help CCS/BECCS
- Trade issues: need solutions that cover specific sectors globally, not just in one country
- Importance of cluster approach
- R&D for industrial applications
- Storage capacity assessment and investigation

CCS in ETP: Where is CO₂ storage needed?

This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Note: Mass captured shown in GtCO₂

Between 2015 and 2050, 123 Gt of CO_2 are captured that need to be transported to suitable sites and stored safely and effectively. Storage sites will need to be developed all around the world.

Thank You!

dennis.best@iea.org