

Electricity Transmission and Distribution 2: Thermal and electrical energy storage

IEA-RSA Bilateral Event
Electricity Transmission and Distribution, Smart Cities

6 July 2011, Johannesburg, South Africa

Prof. Dr. Luisa F. Cabeza University of Lleida

Spanish Representative Energy Storage Implementing Agreement

ECES

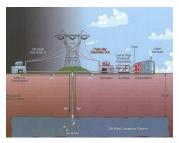
Introduction

- Properties of and Energy Storage System
 - Storage Capacity (kWh/kg, kWh, m³)
 - Phys. / Chem. Effect, Storage Material, Boundary Conditions
 - Charging / Discharging Power (W/kg, W/m³)
 - Mass and Heat Transfer, Storage Engineering
 - Storage Efficiency
 - Losses (Storage Period, Transformations)
 - Storage Period (Time)
 - Hours, Days, Months, Year
 - Cost (€/kWh, €/W)
 - Investment, Number of Storage Cycles

Electrical energy storage technologies

Storage of Electrical Energy

Storage of Electro-chemical Energy



Storage of Mechanical Energy

Hours

Rated

Discharge Time

Minutes

1 kW

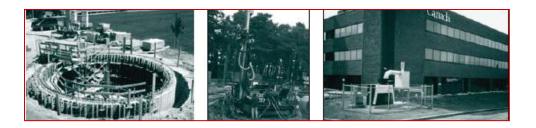
Metal-Air

Electrical energy storage technologies

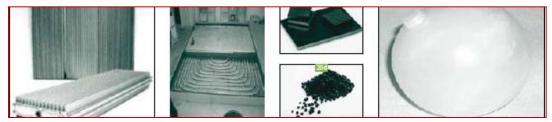
Storage Period and Discharging Power

Balance Pumped Flow Batteries Hydro **PSB** ZnBr VRB **NaS Battery** High Energy Super Capacitors Lead-Acid Batteries Ni-Cd Li-ion Other Adv. Batteries **High Power Fly Wheels** SMES High Power Supercaps **1 GW** 100 kW 1 MW 100 MW 10 MW

Grid


System Power Ratings

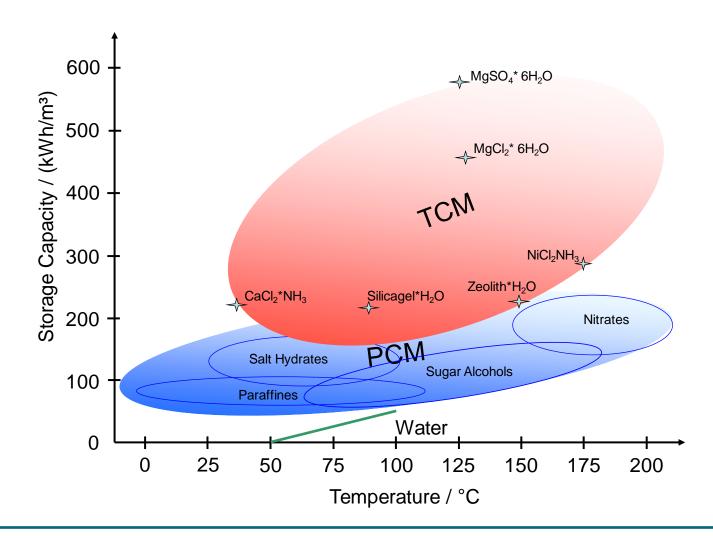
10 kW



Thermal energy storage technologies

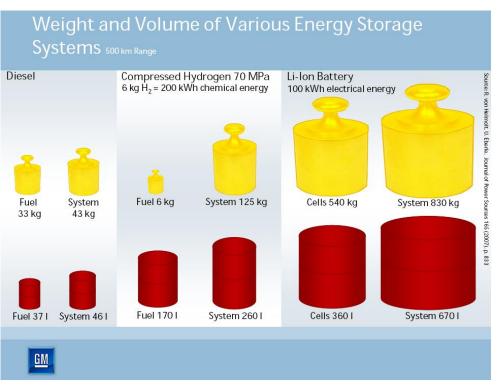
Thermal energy can be stored as sensible heat

Thermal energy can be stored as latent heat


Thermal energy can be stored thermo-chemically

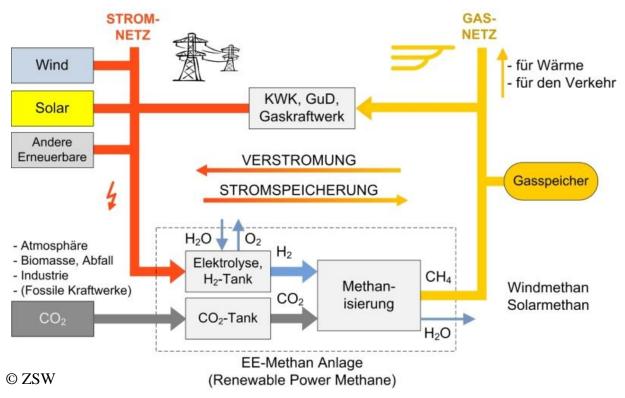
Thermal energy storage technologies

Storage capacity vs. Temperature



Chemical energy storage

- Energy Storage by Hydrogen Production and Storage
 - Hydrogen is the most powerful fuel with regard to its mass
 - Loss-free long-term storage is possible
 - Electricity production by fuel cells



Chemical energy storage

- Energy Storage by Methane Production and Storage
 - Methane from Hydrogen (and CO2)
 - Efficiency >80 % (Sabatier-Process)
 - Existing Infrastructure (natural gas)

Storage	Capacity	Power		Storage	Cost
Technologies	kWh/t	MW	Efficiency	Time	€-cent/kWh
Mechanical					
Pumped Hydro	1	1-1500	70-80%	day - month	8-14
Flywheel	5-100	1-100	90%	hour	300-500
CAES	2 kWh/m³	300	40-70%	day	13-27
Electro-chemical					
Lead-Acid	40		85%	day - month	28-37
Li-ion bat.	130	J.02 - ?	90%	day - month	57-140
NaS bat.	110	0.05	85%	day	31-43
Redox-Flow bat.	25	Q d	75%	day - month	20-30
SMES	3	10	95%	hour - day	~10000
Supercaps	5	0.	95%	hour - day	~10000
Thermal					
Hot Water	10-50	0.001 - 10	50-90%	day - year	0.01
PCM	50-150	0.001 - 1	75-90%	hour - week	1-5
Chemical Reactions	120-250	0.01 - 1	100%	hour - day	0.8-4
Chemical					
Hydrogen	2,8 kWh/m ³	0.001 - 1	28-50%	day - year	19-50
Methane	10,2 kWh/m ³	0.01 -200	24-42%	day - year	12-34

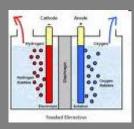
A complex matter:

Seasonal storage – Long-term Storage of PV (Summer to Winter)

Storage	Capacity	Power		Storage	Cost
Technologies	kWh/t	MW	Efficiency	Time	€-cent/kWh
Mechanical					
Pumped Hydro	1	1-1500	70-80%	day - month	8-14
Flywheel	5-100	1-100	90%	hour	300-500
CAES	2 kWh/m³	300	40-70%	day	13-27
Electro-chemical					
Lead-Acid	40		85%	day - month	28-37
Li-ion bat.	130	0.02 - ??	90%	day - month	57-140
NaS bat.	110	0.05 - 50	85%	day	31-43
Redox-Flow bat.	25	0.01-10	75%	day - month	20-30
SMES	3	10	95%	hour - day	~10000
Supercaps	5	0.001 - 1	95%	hour - day	~10000
Thermal					
Hot Water	10-50	0.001 - 10	50-90%	day - year	0.01
PCM	50-150	0.001 - 1	75-90%	hour - week	1-5
Chemical Reactions	120-250	0.01 - 1	100%	hour - day	0.8-4
Chemical					
Hydrogen	2,8 kWh/m ³	0.001 - 1	28-50%	day - year	19-50
Methane	10,2 kWh/m ³	0.01 -200	24-42%	day - year	12-34

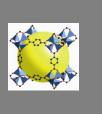
- A complex matter:
 - Seasonal storage

Hydrogen:


Fuel:

Electricity (Fuel Cell):

Heating:


Overall Efficiency 50%
Overall Efficiency 30 %
Overall Efficiency 50 %

Total

~ 51%

Efficiency:

Electrolysis

Compression

Transport

Storage

~ 70 %

~ 90 %

~ 90 %

~ 90 %

 $\hbox{@U. Stimming, TUM}\\$

- A complex matter:
 - Seasonal storage

Hot Water:

Fuel: Electricity: Heating: not possible! not possible! Overall Efficiency 225 %

Total

~ 225%

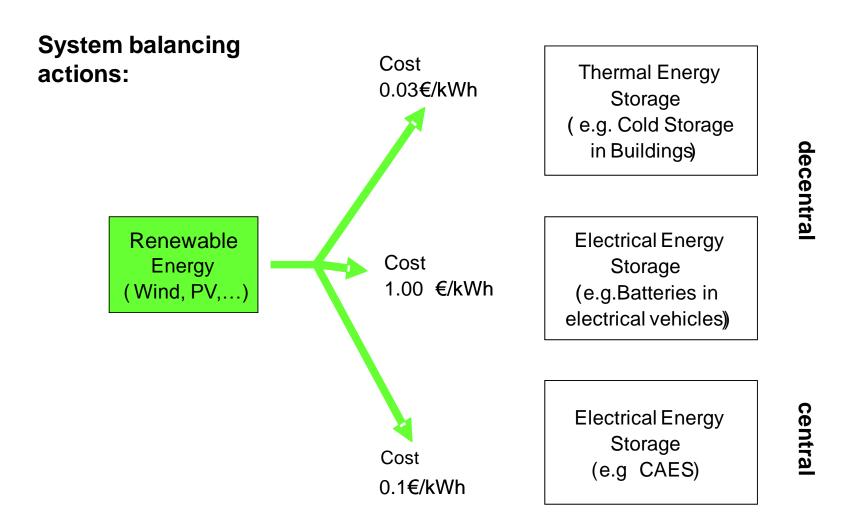
Efficiency:

Heat Pump

Storage

~ 300 %

~ 75 %



- A complex matter:
 - Important:
 - Look at the whole efficiency chain
 - Take the final energy demand into account
 - Try to identify the most suitable technology for the application

Thermal Energy Storage for Electricity Storage?

Application: Integration of Wind Energy

Thermal Energy Storage for Electricity Storage?

- Application: Integration of Wind Energy
 - Storing Wing Electricity in Fridges
 - 20 Million Fridges (<50% of German Households)
 - PCM Cold Storage for 12 hours
 - Charging Time 3 hours
 - Cost 5 €

Electric Power
Storage Capacity
Economics

1.15 GW 3.5 GWh

> 120 Cycles/Year

Economical Limits

- Example: Thermal Energy Storage
 - Storage capacity = 100 kWh
 - Price for thermal energy = 0.05 €/kWh
 - Return on invest = 5 years

Storage Technologies	Capacity kWh/t
Thermal	
Hot Water	10-50
PCM	50-150
Chemical Reactions	120-250

Economy Depending on the Number of Storage cycles						
	Cycles	Cycles	Total	Savings	Specific Invest	Simplified Cost
	per	5 Years	Energy	€	Cost	Model (Capital +
	Year		Savings		€/kWh	Operation)
			kWh			€/kWh
Seasonal Storage	1	5	500	25	0,25	0,18
Daily Storage	300	1.500	150.000	7.500	75	54
Short Term Storage						
3 Cycles per Day	900	4.500	450.000	22.500	225	160
Buffer Storage 10					/	
Cycles per Day	3.000	15.000	1.500.000	75.000	750	540
© R. Tamme, DLR						

Commercial Issues and Barriers

- Absence of (defined) market/competitive product
- Limited presence of corporate vendors
- Limited understanding of applications & benefits
- Position/competitiveness, relative to conventional network solutions
- Financing/resourcing RD&D programmes

Conclusions

- The optimal energy storage technology has to be identified for the actual application:
 - Energy storage provides the energy form needed
 - Electricity Heat/Cold Fuel
 - Efficiency has to be evaluated over the complete storage process (from charging to utilization
 - Economical boundary conditions have to be taken into account

The diversity of possible energy storage solutions enables a high stability of future energy systems

Thank you for your attention

lcabeza@diei.udl.cat