HTTP://WWW.CSE.ANL.GOV/BATPAC/

Automotive Battery Cost Using BatPaC

SHABBIR AHMED PAUL NELSON, NARESH SUSARLA, DENNIS DEES Chemical Sciences and Engineering Division

Presented at the IEA Workshop on Batteries for Electric Mobility Paris, March 7, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information

BatPaC is a spreadsheet tool for designing automotive Li-ion battery packs

- Designs the cells and the pack for a given set of specifications
 - Electrode Chemistry
 - Energy storage capacity
 - Pulse power requirement
 - And many others (voltage, fast charge requirement, ...)
- The results include
 - Battery pack metrics (size/dimensions, weight, energy density, etc.)
 - Cost of battery packs when manufactured in large volume
- The design and cost calculations are performed by using
 - algorithms and correlations derived from other results in other models
 - material properties generated in the laboratory

BATPAC DESIGNS THE BATTERY AND CALCULATES ITS MASS, VOLUME, MATERIALS, HEAT TRANSFER NEEDS, AND COST

Iterate Over Governing Eqs. & Key Design Constraints

- Cell, module, & pack format
- Maximum electrode thickness
- Fraction of OCV at rated power

- Pack specifications
 - Power and energy (range)
 - Number of cells

Cell Chemistry

- Area-specific impedance (ASI)
- Reversible capacity C/3
- OCV as function of SOC
- Physical properties

http://www.cse.anl.gov/batpac/

P.A. Nelson, K.G. Gallagher, I. Bloom, D.W. Dees, Modeling the Performance and Cost of Lithium-ion Batteries for Electric Vehicles, second ed., Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL USA, 2011. ANL-12/55.

Transport models are used to define correlations for electrode thickness

Analytical expression for limitations on both discharge & charge

Gallagher et al, J. Electrochem. Soc. 163(2) A138 (2016) 4

Comparing 3 EV batteries (Cost based on 100 K packs produced per year)

NMC622-Graphite	Case 1	Case 2	Case 3
Energy, kWh	60	80	100
Power, kW	150	200	300
Charging Time (ΔSOC=80%), min	30	30	30
Cathode Thickness, µm	76	88	98
No. of Cells	240	240	240
No. of Modules	6	6	6
Cell and Pack Capacity*, Ah	67	89	111
Price of Cells to OEM, \$	\$6,596	\$8,074	\$9,477
\$/kWh	\$110	\$101	\$95
Price of Pack to OEM, \$	\$8,646	\$10,240	\$11,761

The electrode materials represent a significant fraction of the pack cost

60 kWh, NMC622-G, 100K packs/year

Materials and Purchased Items	%
Positive Active Material	29
Negative Active Material	15
Carbon and Binders	2
Positive Current Collector	2
Negative Current Collector	6
Separators	11
Electrolyte	10
Cell Hardware	4
Module Hardware	13
Battery Jacket	8

Batpac is updated with results from a number of supporting models

- Other models used to generate input parameters for BatPaC include
 - Baseline plant production cost model
 - Transport model of electrode layer
 - Heat transfer modeling within the cell
 - Production of the NMC cathode material
 - Cathode drying and solvent (NMP) recovery
 - Model of Cell-Formation protocol
 - Mass and heat transfer model for drying of the cathode layer
 - Journal of Power Sources 378 (2018) 660–670
 - Dry room operations
 - Journal of Power Sources 326 (2016) 490-497

NMC PRODUCTION PROCESS

Estimated production cost of NMC333 is approximately \$20 per kg

- $MSO_4 + Na_2CO_3 = MCO_3 \downarrow + Na_2SO_4$
 - The energy demand is ~ 2 kWh/kg
 - Thermal/Electrical = 3
 - Raw materials contribute 50+% to cost of final product
- $MSO_4 + 2NaOH = M(OH)_2 \downarrow + Na_2SO_4$
 - Requires more water, costs 40 ¢/kg more

Results based on 6500 kg/day plant

- 4 kWh per kg_{NMC333}
- \$23¹ per kg_{NMC333}
- \$22¹ per kg_{NMC622}

BatPaC 3.1 includes a correlation for cost of NMCxxx = f(metal prices)

¹Co metal price \$26/kg_{Co}, \$8/kg_{Li2CO3}

Journal of Power Sources 342 (2017) 733-740

Modeled the cathode drying and NMP recovery process

Cathode drying and recovery contributes ~\$10 / kWh (3%) to the cost of a PHEV battery pack

- The process requires ~420 kWh per kWh battery pack*
 5800 kW, 580 kW/kWh
- Energy demand is 45 times the energy needed for NMP vaporization
- Large energy demand is constrained by safety
 - Large excess air is needed to limit NMP concentration in hot air
- The air heater for the coating line ovens (dryer) is the largest contributor with 60+% of total demand
- Cost of energy is ~10% of process, with opportunities to reduce energy demand (CO2-equivalent emissions)

of 4M kq/yr of NMP

*Plant producing 100K packs/yr of 60 kW, 10 kWh PHEV batteries

Ahmed et.al., Journal of Power Sources 322 (2016) 169-178

Argonne

Effect of production volume and cathode price on cell level prices

- For 60 kWh batteries
 - Effect of production Volume, packs per year

Packs per year	Cell-Level Prices \$/kWh
500 K	93
100 K	109
50 K	118
25 K	130

- Effect of cathode price, \$/kg

NMC622 Price, \$/kg	Cell-Level Prices \$/kWh (100K pk/yr)
17.00	106
18.00	109
19.00	113

- Combined effect of \$20/kg and 25K packs per year
 - Cell Price = \$134 / kWh

A study reported on the economies of scale derived from a flex plant

 Unit cost per battery pack and cost of energy storage (including the BMS) for LMO batteries manufactured at the indicated rates in plants dedicated to a single battery type producing at 100% capacity (lines) and in a flex plant producing all of the batteries at 100% of the 235,000 packs per year capacity (markers); all positive electrodes measure 100-mm by 300-mm.

Production Rate (1000 Packs/year)

BatPaC was used to project and compare pack costs with different electrode combinations

Projected costs for 100kWh_{Total}, 85 kWh_{use}, 80kW battery packs

These are best case projections: all chemistry problems solved, performance is not limiting, favorable system engineering assumptions, high volume manufacturing

D. Howell, DOE-VTO Annual Merit Review Meeting, June 2017

Argonne 🦨

Fast charge capability increases the cost of batteries

100 kWhTotal, 85 kWhUseable, 300 kW, Gr-NMC622, 168 cells, 315V

For Δ80% SOC (4 mA/cm²)	Cells \$/kWh _{Use}	Pack \$/kWh _{Use}
60 min	110	132
20 min	128	151
15 min	145	171
10 min	179	210

Journal of Power Sources 367 (2017) 250-262

SUMMARY

The cost of the battery pack is affected by many factors

- Upstream supply chain
- Pack production steps
- Downstream
 - Second life
 - Recovery and/or recycle of used cells
 - Waste
- Technology advances

Price will be balanced between the cost and what the market will bear

This project is funded by the US Department of Energy's Vehicle Technologies Office.

QUESTIONS / COMMENTS ?

www.anl.gov

BatPaC was used to project performance metrics with different electrode combinations

Projected costs for 100kWh_{Total}, 85 kWh_{use}, 80kW battery packs

These are best case projections: all chemistry problems solved, performance is not limiting, favorable system engineering assumptions, high volume manufacturing

Not published, March 2, 2018

Argonne 🕰