

Sustainable Cycle Solutions for smooth and optimized nuclear development

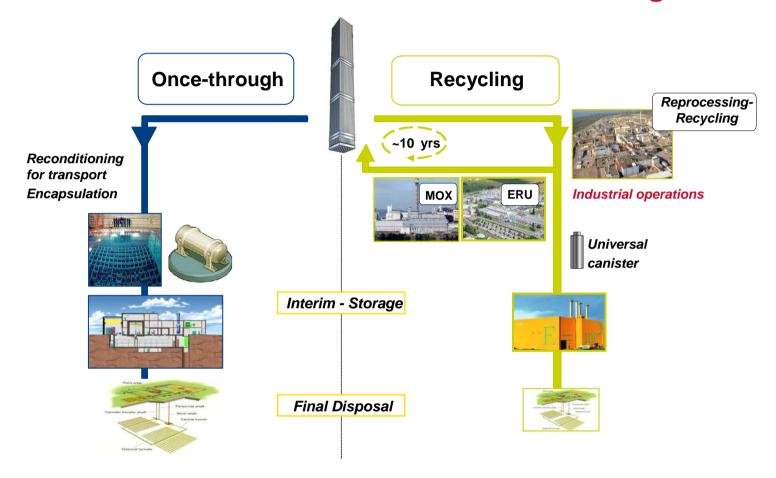
Rémy Autebert Senior Executive Vice President, Asia AREVA

Asian nuclear capacity is expected to increase significantly over 2010-30

Optimizing the fuel cycle will become even more crucial to ensure the sustainable growth of nuclear energy

Main drivers of used fuel management

Risk management


- ► Non-proliferation & security
 - Research reactor fuels
 - Not self protected fuels
 - Fuels located in « risky areas »
- Nuclear safety
 - Damaged fuels
 - Saturated sites (core unloading)
 - Saturated pools close to reactors
- ► Environmental impact & footprint
 - Seismic
 - Maritime
 - Flooding
- ► Public acceptance

Nuclear System Performance

- ► Minimize waste generated
- ► Preserve natural resources
- ► Increase energy independence
- Optimize cost of nuclear electricity

Choosing between two options for Used Fuel Management

Used fuel economics

- •Used fuel management is 6% of nuclear cost.
- •According to international studies, cost of both cycle are comparable.

Today's picture of Used Fuel Management programs in Asia

China

- Ambitious plan for recycling installations, supported by the government
- Ambitious fast reactor program
- Need for interim storage too. given the size of the nuclear program

Japan

- Rokkasho-Mura (2014)
- J-Mox plant design project (MOX) fabrication)
- Tokai plant & Monju reactor

Taiwan

- Used fuel storage issues : pool's maximum capacity is reached
- Political & Public issue, call for urgent remediation
- 123 agreement which pave the way towards reprocessing overseas

Vietnam

- Nuclear program is being launched
- 1st consideration on Used Fuel Management

South Korea

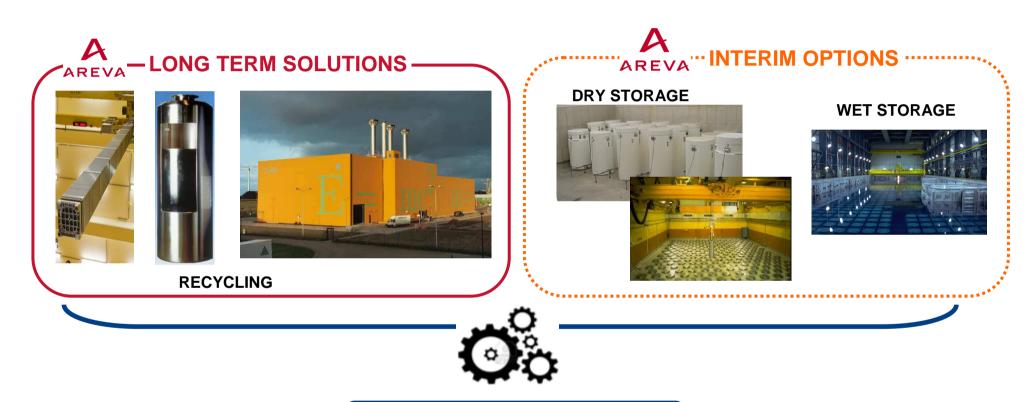
- 123 agreement under revision with the USA
- R&D on Pyroprocessing
- ♦ R&D program on Gen IV reactor
- Difficulties to choose a clear path
- Countries are at different steps of their nuclear program:
 - Choice of the recycling path
 - Choice of the once-through path
 - •No long-term political decision taken yet
- Countries launching or discussing a nuclear program tend to look from the beginning the used fuel management
 - Differentiating factor in New Build offers

India

- Kalpakkam (400t/y) in operation
- 500MW fast reactor to start 2014
- Plans to develop Kalpakkam treatment facility
- Ambitious fast reactor/AHWR program

Malaysia

 Nuclear program under discussions


Setting up a deep geological disposal repository is a long term project

		License to build	Start of operations	Corresponding electricity output (TWh)	Status
Closed cycle		2032	2047-2090	1860	Under discussion
	0	2019	2025	18 000	Siting in progress
		2025	2035	16 400	Under discussion
		2030	2050-2060	-	Siting under investigation
Open & Closed cycle	•	2019/2020	2045 (at the earliest)	1 300	Siting under discussion
Open cycle		Yucca Mountain Project stopped by the Obama administration in 2010			
		2010	2025	2 900	Application submitted – Main criticality safety issues to be solved
		2012	2020	-	Construction license submitted

Sources: "The Economics of the Back End of the Nuclear Fuel Cycle", NEA, 2013 CNNC presentation, 2013

Industrial solutions for a sustainable and responsible management of used fuel exist

Sustainable Cycle Solutions

Recommendations for Used Fuel Management

- Overall used fuel management policy and consistent implementation plan are key to the responsible development of nuclear energy
 - Two sustainable solutions are available for nuclear countries.
 - The faster it is implemented with the long-term support of government, the safer.
 - Countries lacking of clear plan for used fuel management implementation are facing difficulties (notably in Public Acceptance, Technics, Investment look-out...).
 - Wait and see is not a plan
- In all cases, a final disposal center (big for one-through option, smaller for recycling one) is mandatory
 - Development and implementation are a long time process
 - Program should advance faster in all Asia

Main drivers of used fuel management

Risk management

- ► Non-proliferation & security
 - Research reactor fuels
 - Not self protected fuels
 - Fuels located in « risky areas »
- Nuclear safety
 - Damaged fuels
 - Saturated sites (core unloading)
 - Saturated pools close to reactors
- ► Environmental impact & footprint
 - Seismic
 - Maritime
 - Flooding
- ► Public acceptance

Nuclear System Performance

- ► Minimize waste generated
- ► Preserve natural resources
- ► Increase energy independence
- Optimize cost of nuclear electricity

