International Partnership for Energy Efficiency and Conservation (IPEEC)
Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT)

2nd Workshop (At Jakarta)

Session III: Energy Efficiency Indicator
- Panel Discussion -

October 19th, 2011

(Panelist / WEACT Trainer) Kazuhiko YOSHIDA

General Manager

Cooperation Planning and Management Department International Cooperation Division The Energy Conservation Center, Japan (ECCJ) On Behalf of Ministry of Economy, Trade and Industry

Overview National Energy Efficiency Indicators and Targets (Japan and Other EAS Countries)

Countries	EE Indicator Goals						
Japan		30% Improvement by 2030 from 2003 Level					

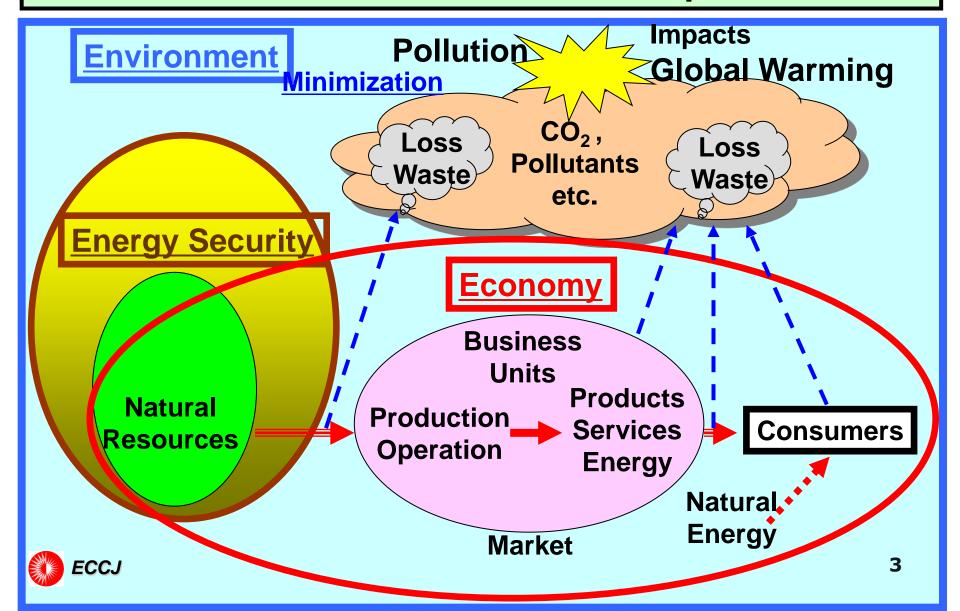
Related Target

Indicator	Goals
Amount of	6% Reduction in 2008-2012 from
GHG Emission	1990 Level

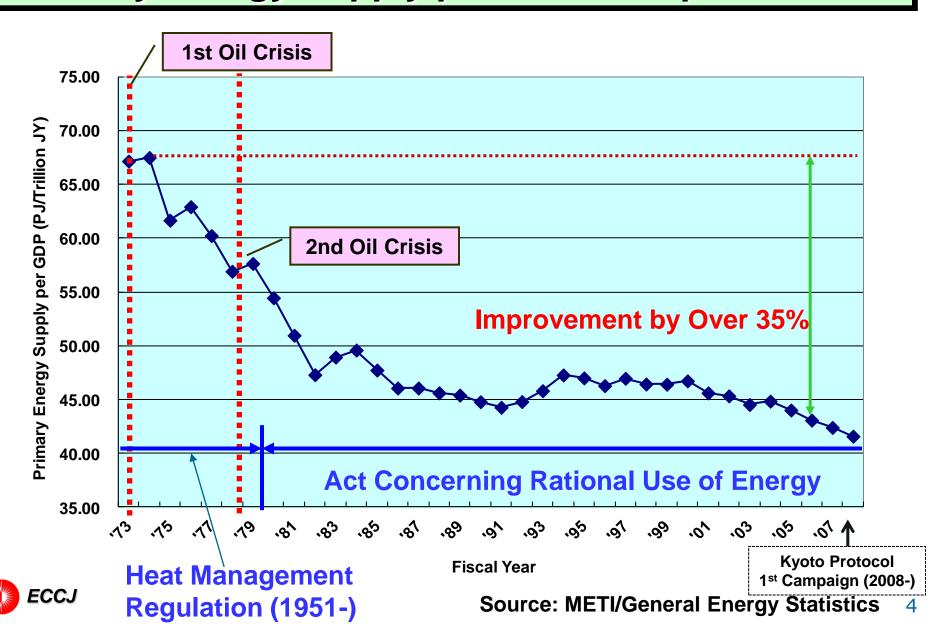
(For Reference) Other EAS (East Asia Summit) Countries

Countries	EE Indicator	Goals
Australia	Carbon Pollution	5% Reduction below 2000 Level by 2020
Brunei Darussalam	Energy Intensity (TPES/GDP)	25% Improvement by 2030 from 2005 Level
Cambodia	Final Energy Demand	10% Reduction from BAU by 2030
China	Energy Intensity (TPES/GDP)	16% Improvement during 12th 5- yaer Plan (2011-2015)
India	Not Submitted	
Indonesia	Energy Intensity (TPES/GDP)	Reducing 1% / Year until 2025
Korea	Energy Intensity (TPES/GDP)	46.7% Improvement by 2030 from 2006 Level
Lao PDR	Final Energy Demand	10% Reduction from BAU by 2030

Countries	EE Indicator	Goals
Malaysia	Final Energy Demand	8.6% Reduction from BAU by 2020
Myanmar	TPES	5% by 2020 from 2005 Level 10% by 2030 from 2005 Level
New Zealand	Energy Intensity (TPES/GDP)	40% Improvement by 2025 from 1995 Level
Philippines	Final Energy Demand	10% Saving from BAU by 2030
Singapore	Energy Intensity (TPES/GDP)	20% by 2020 from 2005 Level 35% by 2030 from 2005 Level
Thailand	Energy Intensity (TPES/GDP)	15% by 2020 from 2005 Level 25% by 2030 from 2005 Level
Vietnam	Energy Intensity (TPES/GDP)	3-5% Saving from BAU (2010) 5-8% Saving from BAU (2015)


TPES: Total Primary Energy Supply

BAU: Business As Usual



Source: Asia Energy Efficiency and Conservation Collaboration Center (URL: http://www.asiaeec-col.eccj.or.jp/dtb-policies/eegoals/index.html)

E.E. Indicators: Policy Background to Harmonize "3Es" for Sustainable Development

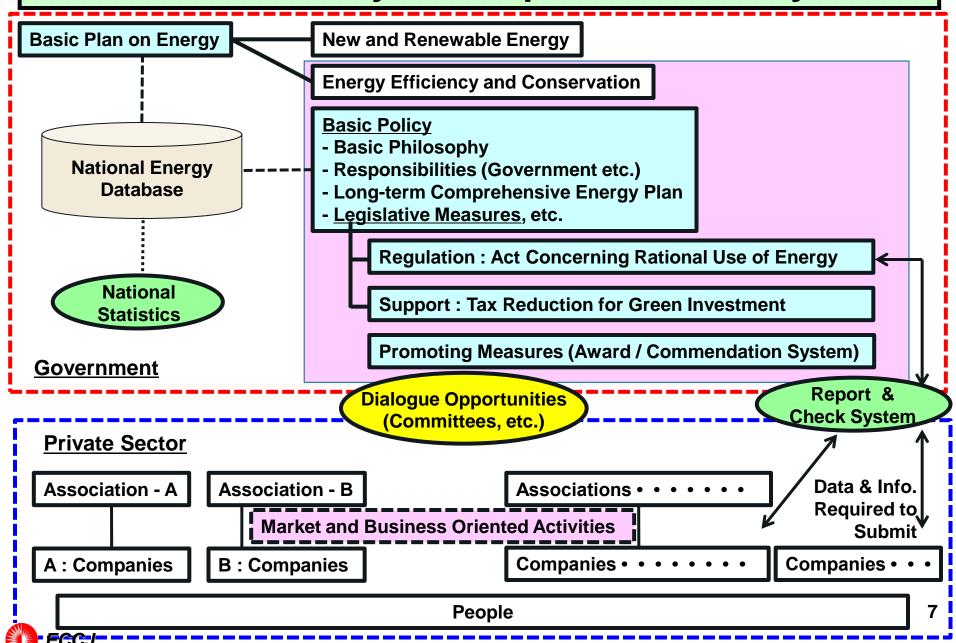
Primary Energy Supply per GDP in Japan: Trend

Main Energy Policies to Realize the "3Es" Harmonization in Japan

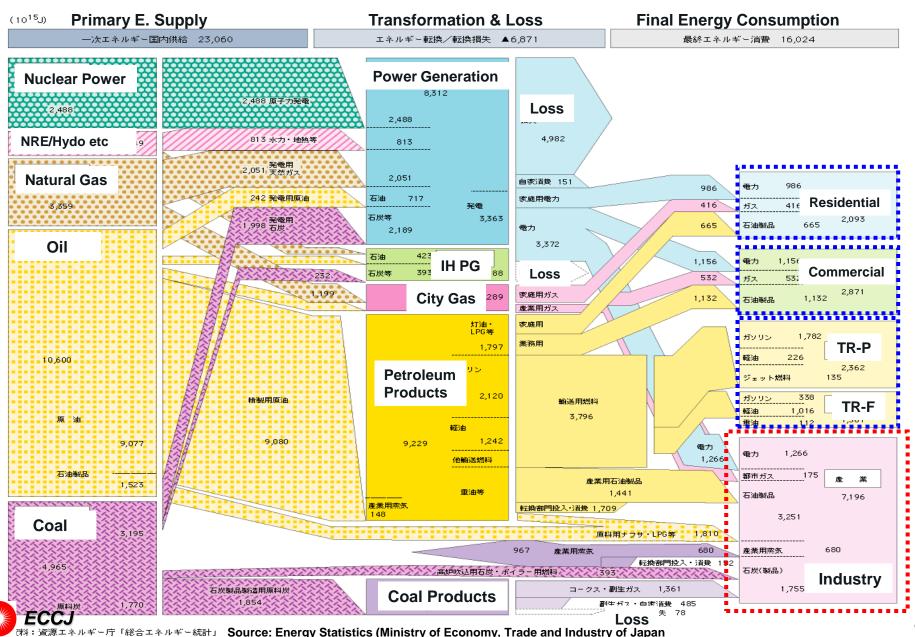
1. Fundamental Law on Energy Policy Measures

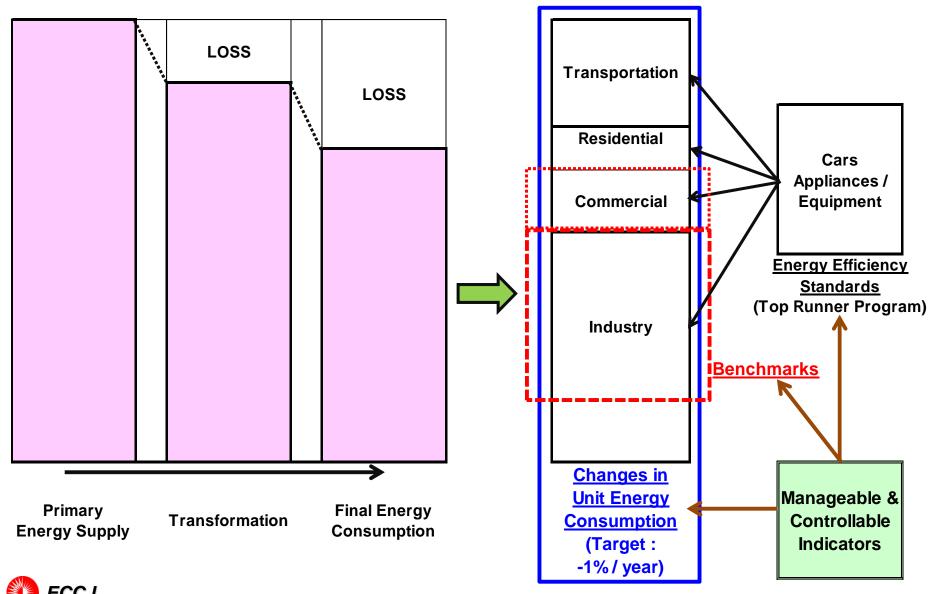
- (1) <u>Legislative Measures</u> for Energy Supply Demand Management (Including Financial Measures)
- 1) Act Concerning Rational Energy Use (EC Law)
- 2) Energy Conservation and Recycling Assistance Law
- (2) Development of **Basic Plan on Energy (Long Term Plan)**
- 1) Establishment of Long-term / Comprehensive / Well-planned Measures for Energy Supply Demand Management
 - EC Law / Technological Strategy for R&D / Sectoral Benchmark Approach, etc.
- 2) Establishment of Measures for Intensive R&D of E. Technologies
 - Development of Technological Strategy on Energy
- 2. Law Concerning the Promotion of Measures to Cope with Global Warming

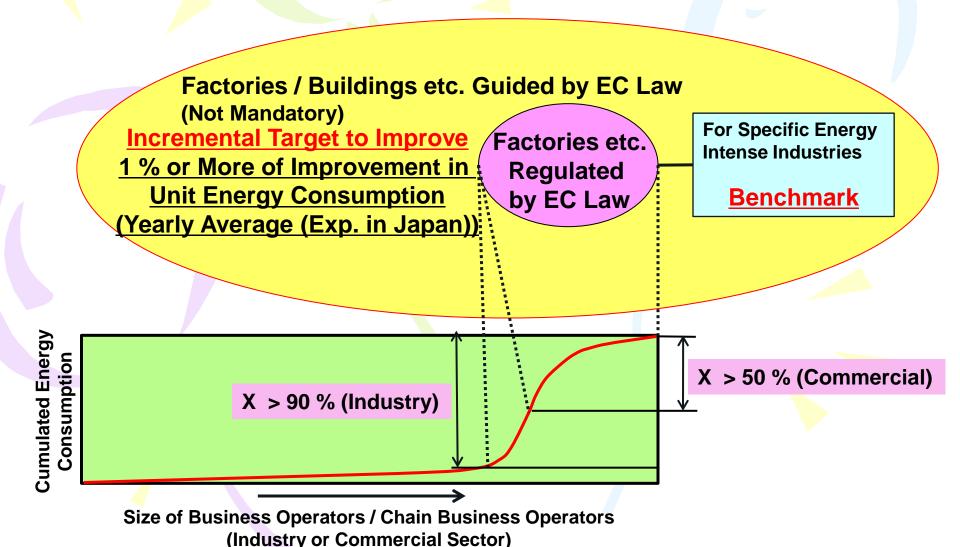
Main Energy Policies to Realize the "3Es" Harmonization in Japan (Continued)


2. Law Concerning the Promotion of Measures to Cope with Global Warming (April 1999)

Establishment of the Following


- (1) Kyoto Protocol Target Achievement Plan
 National Basic Direction on Countermeasures against Global
 Warming / Measures by Sector
- (2) Global Warming Prevention Headquarters
- (3) Implementation Plans of National and Local Government
- (4) National System for CO2 Calculation / Reporting / Publication / Realization through the EC Act
- (5) National System to Implement Kyoto Mechanism (Registry) Trading Rule of Credit / Protection of Trading
- (6) National and Regional Global Warming Prevention Centers to Promote Nation-wide CO2 Reduction Activities
- (7) Promoters to Facilitate National CO₂ Reduction Activities


Overview of Policy and Implementation System


National Energy Balance: Basis to Establish E.E. Indicators

National Energy Flow and Energy Efficiency Indicators

Basic Policy: Energy Efficiency Indicators to Setup and Target for Controlling

Benchmark by EC Act in Japan (Iron and Steel)

Classific <mark>at</mark> ion	Business Field	Benchmark Index (Definition)	Numerical Target
7	Iron manufacturing using blast	Unit energy consumption obtained by A/B	0.531 kIOE/t or
1A	furnaces (Business to manufacture pig iron using blast furnaces to manufacture products)	A : Energy consumption to manufacture steel using blast furnaces B : Amount of crude steel	less
	Conventional steel manufacturing	Unit energy consumption obtained by ((1) +	0.143 kIOE/t or
	using electric arc furnaces (EAF)	(2))	less
1B	(Business to manufacture pig iron using EAF and to manufacture rolled steel products, excluding 1A)	(1) EAF Process: Unit energy consumption obtained by A/B A: Energy consumption in the process to manufacture crude steel using EAF B: Amount of raw steel (2) Rolling Process: Unit energy consumption obtained by A/B A: Energy consumption in the process to manufacture rolled common steel products from slab or billet	
	Special steel manufacturing using	Unit energy consumption obtained by ((1) +	0.36 klOE/t or
	electric arc furnaces (EAF) (Business to manufacture pig iron using EAF to manufacture special steel products (rolled special steel products, hot special steel pipes,	(2)) (1) Unit energy consumption obtained by A/B A: EAF Process: Energy consumption in the	less
1C	cold-drawn special steel pipes, cold-finished special steel products, forged special steel products, cast special steel products), excluding 1A)	process to manufacture crude steel using EAF B: Amount of crude steel (2) Finishing Process: Unit energy consumption obtained by A/B A: Energy consumption in the process to manufacture special steel products (rolled special steel products, hot special steel pipes, cold-drawn special steel pipes, cold-finished special steel products, forged special steel products, casted special steel products) from billet B: Amount of shipped (sold) steel	

Benchmark by EC Act in Japan (Cement / Paper)

Cement

Classification		Benchmark Index	Numerical Target
	Cement manufacturing	Unit energy consumption obtained by ((1) +	3891 MJ/t or
	(Business to manufacture Portland cement (JIS	(2) + (3) + (4)	less
	R 5210), blast furnace cement (JIS R 5211),	(, , , , , , , , , , , , , , , , , , ,	
	silica cement (JIS R 5212), fly-ash cement (JIS	(1) Raw Material Preparation Process: Unit energy	
	R 5213))	consumption obtained by A/B	
		A: Energy consumption in the raw material	
		preparation process	
		B : Amount of prepared raw material	
		(2) Clinker Making Process : Unit energy	
		consumption obtained by A/B	
3		A : Energy consumption in the clinker making	
		process	
		B : Amount of clinker	
		(3) Finishing Process: Unit energy consumption	
		obtained by A/B	
		A: Energy consumption in the finishing process	
		B : Amount of finished cement	
		(4) Shipping Process: Unit energy consumption	
		obtained by A/B	
		A: Energy consumption in the shipping process, etc.	
		B : Amount of Shipped cement	

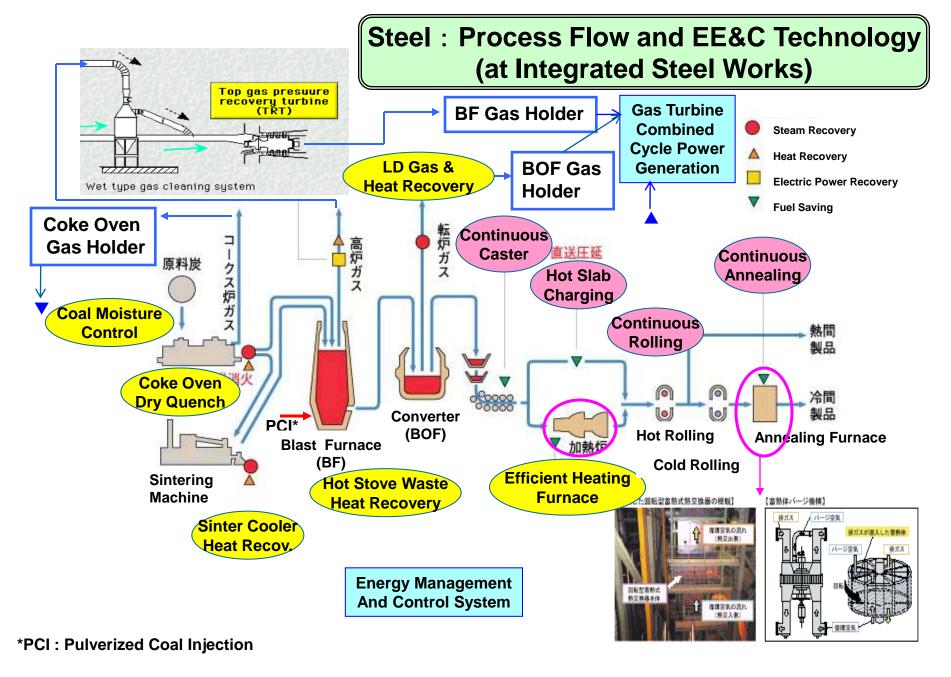
Paper

Classification	Business Field	Benchmark Index	Numerical Target
4A	Paper Manufacturing (Paper for printing, copying and wrapping, including newspaper)	Unit energy consumption : (Energy Consumption) / (Product)	853 <mark>2 M</mark> J/t or less
4B	Cardboard Manufacturing	Unit energy consumption : (Energy Consumption) / (Product)	4944 MJ/t or less

Benchmark by EC Act in Japan (Electric Power)

Classification	Business Field	Benchmark Index	Numerical Target
	El <mark>ectr</mark> ic pow <mark>er su</mark> pplier	Index obtained by A/B	100.3% or more
	(I <mark>ndustry that supplies electricity determined by</mark> 2.1 of Act on the Rational Use <mark>of Ener</mark> gy among	$A/B = \sum_{i=1}^{n} (Pr-iX(A/B)i) / \sum_{i=1}^{n} Pr-i$	
	general electricity industry or wholesale electricity industry defined by 2.1.3 of Electricity	(Standardized thermal efficiency index)	
	Utilities Industry Law)	For thermal power generation facilities of	
	,	the electric power supplier specified except	
		a low availability of facilities	
2		A : The actual thermal efficiency obtained by a performance test of rated output B : Designed efficiency of the rated output	
		(Data to Submit for Reference) Thermal energy efficiency obtained by C/D C: Total electric power generated at the generation end D: Total calorific heat (gross) to generated the electric power specified by C	

Other Specified Industries for Benchmark
Oil Refining / Chemical (Ethylene and Caustic Soda Manufacturing)


Realistic Benchmarks Manageable and Matched with The Actual Conditions for Each Industry

Conditions / Factors Affecting Benchmark (Iron & Steel)

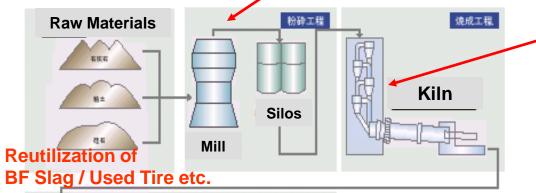
	Droces	lyon w	aking		Stoolmaking		Dolling /	Einiching
Process Ironmaking		Steelmaking		0	Rolling / Finishing			
Factors to Affe		Raw Material Pre- treatment	Blast Furnace (BF)	Hot Metal Pre- treatment	Converter (BOF / LD) Electric Arc Furnace	Casting	Hot Strip Mill (HSM)	Cold Strip Mill (CSM) Finishing
Raw Materials	- Total Fe - SiO2/Al2O3, etc. Limestone	Sintering / Pelletizing - BasicityControl, etc. Sizing / Blending	,	Hot Metal Conditions ([S], [P]) Flux Conditions	Hot Metal Ratio Scrap Conditions Ferro Alloy Addition Basicity Control (CaO Content in Slag)			
	- Total C / Ash Content, etc.	Coke Making	Fuel Conditions Coke / Pulverized Coal / Natural Gas					
Utilities	Gas / Water etc.	Combustion / Heating	Hot Stove / Electricity / Water / N ₂ etc.	Blowing Gas	${ m O_2}$ & Ar for Refining & Degassing / Electricity / Water etc.	Heating Water, etc.	Heating / Water, etc.	Electricity / Fuel for Heating / Water, etc.
Products			* Foundry Iron (Qualities)			(Qualities)	Size etc. (Coil, Plate, Wire, Rod etc.)	Kinds / Qualities / Lot Size etc. (Coil, Plate, Wire, Rod etc.)
Typical Technologies	For Process	Sintering - Mixture Control - Ignition Furnace, etc. Coke Making - Combustion Control - Coal Moisture Control - Recycle waste Plastic	 Hot Blast Control (O₂ Enrichment, etc.) Burden / Gas Distribution Control 	Flux Injection Synchronization of BF-BOF Operation	BOF - Bottom / Top Blowing - Refining Control - Ladle Furnace Treat Degasser EAF - Oxygen Blowing	Continuous Casting (CC) Synchronizing Control with Hot Rolling Low Frequency Stirring	 Rolling Control Continuous Rolling Synchronizing Control with CC (Hot Slab Direct Charge) Descaling 	- Continuous Annealing (Temp. / Atmosphere Control) - Synchronization with HSM - Galvanizing / Plating / Coating
	For EE&C (Common) Energy Control Center, VVVF for Fan / Blower / Pumps, etc.)	Sintering - Cooling Heat Recovery Coke Making - C.O. Gas Recovery - CDQ	 BF Gas Recovery TP Recovery Turbine Hot Stove Waste Heat Recovery Fuel Injection to Tuyere (Inc. Waste Plastic) 		BOF - BOF Heat Recovery - LD Gas Recovery EAF - DC Type Furnace - Scrap Pre-heating	- Regenerative Burner	Re-heating Furnace - Combustion Control - Regenerative Type	Annealing Furnace - Temperature Control - Regenerative Heater
	Unit Energy Consumptions	MJ/t - Sintered Ore MJ/t - Coke	MJ/t - Hot Metal (Pig Iron)		MJ/t - Molten Crude			
					Steel	MJ / t - Crude Steel (Slab, Billet, Ingot)	MJ / t - Hot Coil etc.	MJ / t - Finished Steel

Conditions / Factors Affecting Benchmark (Cement)

Process Factors to Affect EE&C		Raw Material Pre- treatment	Clinker	Finishing / Shipping	
			Pre-Heating / Kiln	Cooling	Afficia Co. Inc.
Raw Materials	Reutilized Waste - Waste Tire - Steel Slag - Fly Ash - Sludge etc.		Utilization of Recycled Tire, Oil, Plastics, Biomass Waste etc.		Mixing Conditions - Gypsum - BF Slag, Fly Ash etc.
	Limestone - CaO Contents Clay etc. Coal - Total C / Ash Content, etc.	Sizing Blending			
Utilities	Fuel / Electricity / Gas / Water etc.	Electricity / Water etc.	Electricity / Fuel / Water etc.	Electricity / Water etc.	Electricity / Water, etc.
Products				Clinker	Kinds / Qualities / Lot Size etc. (Portland Cement, Mixing Cement etc.)
Typical Technologies	For Process	Dry Process Blending / Sizing Control - Vertical Type of Mill with Efficient Classifier etc. (Wet / Semi-Wet Processes Remain.)	Kiln Heat Utilization - Suspension Pre-heater (SP) - Caiciner (New Suspension Pre-heater(NSP)) Efficient Kiln Burner Heat Recovery of Waste Gas	Cooling Control	Additive Mixing Control Size Control - Pre-grinding Control - Efficient Separator
	For EE&C	Application of VVVF for Blowers etc.	Heat Recovery of Kiln Usage of Recycled Fuel (Including Pre-Treatment)	Heat Recovery of Coolant Air	Mixtrure of Recycled Slag and Fly Ash etc.
	Unit Energy Consumptions	MJ / t - Mixture		MJ/t-Clinker	MJ/t - Finished Cement MJ/t - Shipped Cement

Cement Industry: Process Flow and EE&C Technology

Reutilization of Recycled Material • Slag / Sludge / Dust, etc.


Vertical Mill

- Reduction in Electric Power
- Excellent Classifier Control

NSP (New Suspension Pre-heater)
Drying, Pre-heating and Calicining
Raw Materials by Utilizing Waste
Heat from Kiln
Utilization of Recycled Tire, Fuels

Reduction of Fuel

Clinker Silo
Product
Silo
Pre-Grinding

Reduction of Power

Mixed Cement
Reutilization of
Waste Material
(BF Slag, Fly Ash etc.

• Mixing Rate: 22-23%

Participation in International Benchmarking

- Activities in APP (Asia-Pacific Partnership) (*) -

Under Activities on Clean Development and Climate"
Benchmarking for Major Industries in 8 Areas (Cement,
Steel, Aluminum, Power Generation & Transmission, etc.)
(*) Transferred to IPEEC-GSEP (Global Superior Energy Performance)

1. Define and Setup Benchmark

Based on Shared Data / Information

- (1) Key Operating Data (Production, Raw Materials etc.)
- (2) Energy Data
- (3) Applied Technologies and Equipment
- 2. Typical Joint Activities to Prove Effects and Disseminate Effective Technologies to Achieve Benchmarks
- (1) Energy Audit / Investigation of Cooperating Factories to Check Energy Performances etc.
- (2) Implementation of Joint Projects, etc.

18

Conclusion and Recommendation - 1

A. Energy Efficiency Indicators Manageable by Policy etc.

To Be Suitable for National Situations and Matched with Policy

A1. National Level Indicator Matched with National Policy

Monitoring / Evaluation of National Energy Performance toward "Sustainable Development" Based on the "3Es Harmonization"

- Energy Intensity: (Total Primary Energy Supply) / (GDP)
- Energy Elasticity
- -Total Primary Energy Supply, Energy Consumption, etc.

A2. Ministry Level Indicator Manageable by Policy

To Target and Check / Analyze the Actual Results under Policy / Law

- Amount of Used Energy (Incremental Change / Level)
- Energy Unit Consumption (Incremental Change / Level (Benchmark))
- Indicators Related to Environmental Indices
- A3. Company Level Indicator Controllable / Manageable by EM etc.

Indicators for Main Process and Equipment to Control by Companies

- Amount of Used Energy (Incremental Change / Level)
- Energy Unit Consumption (Incremental Change / Level (Benchmark))
- Indicators Optimized with Cost and Sales Amount, etc.

Conclusion and Recommendation - 2

B. Establishment of National Database

(Basis) System to Collect, Monitor, Analyze Data / Information and to Evaluate Energy Performance

- National Statistics (GDP, Population, Number of Households etc.)
- Reporting / Checking System on Energy Use etc. under EC Law
- Definition of Data / Information Required to Establish E.E. Indicators

C. Dissemination of Good Energy Management System

(Basis) System for Promoting EE&C through Systematic Practices of Energy Management by Company – Factory / Building Appropriate E.E. Indicators to Monitor and Control Energy Performance by Utilizing Established Database

Energy Management System to Be Established through

- Energy Conservation Law (and/or)
- ISO 50001 Energy Management System

"EE Indicators Linked with Systematic Actions to Improve"

For More Information

The Energy Conservation Center, Japan (ECCJ)

http://www.eccj.or.jp

<u>Asia Energy Efficiency and Conservation Collaboration</u>
<u>Center (AEEC : Established in April 2007)</u>

http://www.asiaeec-col.eccj.or.jp/index.html

Japanese Business Alliance for Smart Energy Worldwide

http://www.jase-w.eccj.or.jp/eng/index.html

