Green Finance

Aldo Baietti

Lead Infrastructure Specialist East Asia and Pacific Region The World Bank

Phone: +1 202 473-2750 Email: Abaietti@workdbank.org

THE WORLD BANK Australian Government AusAID

Table of Contents

- Research Evidence (Research Report on Leading Initiatives and Literature Related to Green Infrastructure Finance)
 Background
- Green Finance Framework (Green Infrastructure Finance Framework Report)
 - Key similarities and differences between conventional infrastructure and low emissions finance
 - Understanding why green investments projects don't get financed
 - Making green finance work
 - Combining instruments for effective financing solutions
 - Green investment climate
- Next Steps

Research Findings

Green investment demands are significant:

- IEA estimates that in order to halve CO₂ emissions by 2050, investments should be increased by US\$46 trillion over the BAU scenario
- Up to US\$80 billion a year of green investments is needed in order to bend the carbon emission curve

Green investment shortfalls are staggering:

• By 2020, investments will be at least US\$150 billion a year short of the required levels

Research Findings

- Attracting private financing is essential to close the funding gap.
- Public instruments and concessional funding are required to leverage private flows.
- Unfortunately, many green investments are less financially attractive when compared against traditional but less eco-friendly alternatives.

Green Finance Framework

• Key similarities and differences between conventional infrastructure and low emissions finance

Similarities:

- Both are capital intensive and recover their capital over many years
- Both sell their output under a long-term contract with an off-taker
- Both are subject to similar permitting risks

Differences:

- Low emission projects have higher upfront capital costs, and higher whole-of-life costs than their high emissions alternative.
- Low emissions RE projects produce less output per unit of capacity than their high emissions alternative.
- Low emissions projects have higher perceived risks than conventional infrastructure projects

Financed

- Intrinsic characteristics of low emission projects negatively influence their investment profiles.
- A 'financial viability gap' occurs, thus preventing investments in low emission projects from getting financed.
- Perceived risks and distortions of different nature can widen the gap.

EE Investments Face Unique Financing Challenges

- The financial viability of EE investments are also affected by the number and extent of distortions in a given economy.
- Other financing difficulties might exist as EE are typically financed on the strength of the entity's balance sheet and companies have real financing limits.
- Also, the difference between the depreciated value and the salvage value of an existing asset that would be replaced must be fully incorporated in the analysis.
- And, even if an EE investment produces a positive rate of return that beats the entity's hurdle rate, the sponsor may still decide against it for a number of reasons.

Making Green Finance Work

The goal of Green Finance's is to bridge the financing gap and improve the attractiveness of low emission investments

- Rebalancing distortions
- Monetizing the externalities benefits

Combining Instruments for Effective Financing Solutions

- The roles of various stakeholders
 - Contributions of the international community
 - Contribution of national governments
- Public sector policies and instruments
 - A number of instruments are readily available for stakeholder
 - Need to improve their effectiveness
 - Need to develop new instruments

	CDM	CTF Loans Risk-sharing Facilities	GEF Grants	ODA Concessional Loans	FiT	Capital Grants	Tax Credits and Other Tax Incentives	Financial and Other Incentives
Green Finance	\checkmark	\checkmark	\checkmark					
Government				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Example Financing Structure

• Wind Energy Project

- The present value of the viability gap is US\$88 million
- One of the reasons why the project is not financially viable is because the price of coal is subsidized. To rebalance this policy distortion, the government introduces a feed-in tariff of US\$47 per MWh
- Even with this feed-in tariff, the project is still not financially viable. The present value of the financial viability gap is still US\$43 million
- The avoided cost of GHG emissions is calculated to be US\$102 million. This would be enough to close the remaining viability gap.
- CTF could also extend a concessional loan with an implicit subsidy to project sponsor with a present value of US\$43 million.

Financial	Amount	Maturity	Grace	Interest Rate	Subsidy	_		
Instrument			Period		(millions)			
Feed-in Tariff	US\$47 per MWh	- 35 years - 15 years	- 8 years - -	- 2.6% 22% 11%	US\$45	\$250 \$200 \$150 \$100 \$50 \$0	GHG Emissions	
Concessional Loan	US\$53 million				US\$43 -		Policy Distortions	
Sponsor's Equity	US\$48 million						Revenues	
Commercial Debt	US\$14 million				-		· · · · · · ·	
Total					US \$88			

Green Investment Climate

• The development of effective financing solutions requires a country to have thorough understanding of its own Green Investment Climate

Green Investment Climate

Next Step

- Develop Policy Notes
- Identifying New Innovative Financing Approaches for Financing Externalities
- Develop More Efficient Monitoring and Verification
- Carry Out Pilot Country Assessments
- Identify a Few Cases for Pilot Implementation

