Steel and CO₂ – a global perspective

IEA Latin American Expert Dialogue
22nd August 2018 Sao Paulo
Steel in use

- Steel is the world's most recycled material and also uniquely positioned to contribute to the transition to the circular economy.
- Any balanced consideration of the Environmental impact of steel needs to look beyond the issue of direct emissions.
Steel enables mitigation

Almost every GHG mitigation technology relies on steel

Thermal and renewable energy, electrification, mass transport, smart cities, shipping, CCS, hydrogen…

The goals of the Paris agreement cannot be met without Steel
Ways of visualising steel’s total CO₂ + others = GHG footprint

- Direct emissions from our industry represent about 7% of the global total

- In ore based steelmaking most emission are Scope 1 (direct). Scrap based steelmaking is mainly Scope 2 (electricity purchase and use).
Steel industry has seen steady gains in GHG efficiency

- In ore based steelmaking carbon is primarily used as a reducing agent, not a source of thermal energy
- Energy constitutes a significant portion of the cost of steel production, from 20% to 40%
- 1990 - 2015 BOS/EAF Volume increased by 166%, emissions by 77%
- Steel is now more CO₂ efficient than ever before.
Steel industry position

- Governments need to recognise and embrace the importance of a strong and healthy industrial base and engage with the industry when developing climate policy
- Steel is a CO$_2$ and energy intensive, but highly competitive industry that enables CO$_2$ mitigation in other sectors. Inequities introduced by carbon pricing mechanisms could jeopardise fair competition
- A life cycle approach is an important tool for future environmental policy
- Governments should promote and encourage a circular economy approach
- Progress in breakthrough technology development in steelmaking and implementation must be maintained or accelerated requiring the financial burden to be shared.
Crude steel production in million tonnes - 2016

- 110.6 MT (6.7%)
- 40.2 MT (2.4%)
- 1123 MT (69%)
Crude steel production in million tonnes - 2016

150.8 MT 9.2%

1123 MT 69%
Finished Steel Demand – regional trends

Volume Index
1990=100
Finished Steel Demand – regional trends
Finished Steel Demand – regional trends

Volume Index 1990=100
Steelmaking technology varies by region
The BF/EAF balance in the Americas is shifting

- In North America, EAF steelmaking has been growing for 50 years
The BF/EAF balance in the Americas is shifting

- In South America EAF/BF steelmaking has been stable
Improving performance levels – CO2 emissions from steelmaking
Improving performance levels – CO2 emissions from steelmaking
Improving performance levels – CO2 emissions from steelmaking

IEA “2 Degree Scenario”
Improving performance levels – CO2 emissions from steelmaking

Applying best practice now will keep steel industry in line with 2DS in the short term
Breakthrough technology in steelmaking

Open Hearth Steelmaking

BOS Steelmaking
Steelmaking technology has always advanced

- Oxygen Steelmaking: 1846 – 1943 -1975
- Electric Steelmaking: 1810 – 1907 - 1975
- Open Hearth: 1850 - 1900 - 1995
Breakthrough technology in casting

Ingot casting

Continuous Casting
Steelmaking technology has always advanced

Adoption of Continuous Casting 1970-1995
TKS BF8

Commissioned 2007

Euro 200 million

Replaced a 41 year old BF

Expected to last 20 years
Climate Action Recognition

- worldsteel collects and collates emissions data from steel producers
- Scheme recognises that a steel producer has fulfilled its commitment of the worldsteel CO₂ data collection program
- Data must be complete, verified and approved

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Company</td>
<td>38</td>
<td>49</td>
<td>45</td>
<td>51</td>
<td>52 (33*)</td>
<td>50 (37*)</td>
<td>49 (37*)</td>
<td>50 (36*)</td>
<td>48 (35*)</td>
</tr>
<tr>
<td>Site</td>
<td>188</td>
<td>207</td>
<td>208</td>
<td>212</td>
<td>212</td>
<td>210</td>
<td>212</td>
<td>215</td>
<td>198</td>
</tr>
</tbody>
</table>

* Companies that submitted data for 5 consecutive years

- Participants are noted on worldsteel website
- CO₂ Data coverage (Crude Steel production)
 - Including China : 23.0%, Excluding China : 45.6%
Examples of key factors that affect CO2 intensity

- Raw materials selection (Iron-ore quality, coal quality)
- Reducing agent rate: (Coke + PCI + other fuels)/ t Hot Metal
- Switching into carbon lean or Hydrogen containing fuels: Coke → Coal → Natural Gas & H2.
- Increase in PCI (part coking coal and coke replacement)
- Natural gas injection into BF (PCI replacement)
- Heat or energy recovery, from processes and by-products.
- 100% utilisation of by-products

Source: worldsteel analysis
Summary

• Steel is an essential mitigator of emissions in all other sectors
• However producing steel does result in GHG emissions
• The Steel Industry must play its part in achieving the goals of the Paris Agreement
• Efficient, safe and well run plants are also environmentally efficient plants
• worldsteel member’s are committed to achieving top 15% performance to gain the time to develop breakthrough technology
• We need to understand why the best plants do so well
• Longer term, there is need to develop breakthrough technology.
Thank you for your attention.

For further information contact:

Andrew Purvis | Director Safety, Health and Environment
World Steel Association
purvis@worldsteel.org | T: +32 (0)2 702 88 93 | worldsteel.org