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 Water-energy nexus

 Water is used in all stages of electrical 

energy generation

 Electrical power is used for pumping, 

reprocessing and disposing of water

 Water scarcity and impact on power 

generation

 Large loss of generation: USA (2007, 

2008, 2012), France (2003, 2006, 2009), 

Germany (2003), Switzerland (2015)

 Economic consequences

 Reduced security of supply
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Water-Energy Nexus: Impact of Water Scarcity

G. Sansavini
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Water-Energy Challenge – Policy Interdependency

Electric Vehicles Require as much as Three 

Times the Water per Mile as Gasoline

Bioethanol Productions Causing Local Droughts
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 Water-Energy Nexus: impact of water scarcity

 Technologies and policies for thermal power plant cooling

 Smart management of water resources

 Interplay between policy constraints and cooling technologies

 Conclusions and future work
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Outline

G. Sansavini
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 Once-through cooling

 Efficient, simple, lower costs

 Large withdrawals, effecting river water thermal 

regimes

 Wet-type cooling towers

 Does not requires large withdrawals

 Consumes the withdrawn water

 Dry cooling towers

 Does not require water for cooling

 Higher costs, large space, lower efficiency
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Cooling technologies for thermal power plants

https://www.quora.com/What-are-the-principles-
of-cooling-tower

https://www.pi-hun.hu/angol-hutotornyokhttps://www.pi-hun.hu/angol-hutotornyok

http://www.crystal-lagoons.com/industrial-
applications/
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 River wildlife protection

 Release of thermal load

 River temperature constraints

 Salmonid waters

 Tmax ≤ 21.5 ⁰C

 𝛥𝑇 ≤ 1.5 ⁰C

 Water withdrawal and consumption

 Based on local river concessioners

 Consumption constraint to: 1% of 

current flow
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Policies for thermal power plant cooling
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 Can we influence river water temperature and 

flow?

 Yes!

 How?

 By manipulating reservoir releases

 A model for smart scheduling of water resources

 Hydro generation model

 Thermal generation model

 River water temperature prediction

 Mixing of river flows
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Mitigating the vulnerabilities of water-energy 

nexus for thermal power plant cooling

G. Sansavini
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 A model for smart scheduling of water resources

 Hydro generation model

𝑃𝐻𝑗,𝑡 = 𝐶1,𝑗 ∗ 𝑉𝑗,𝑡
2 +𝐶2,𝑗 ∗ 𝑋𝑗,𝑡

2 + 𝐶3,𝑗 ∗ 𝑉𝑗,𝑡 ∗ 𝑋𝑗,𝑡 +𝐶4,𝑗 ∗ 𝑉𝑗,𝑡 + 𝐶5,𝑗 ∗ 𝑋𝑗,𝑡 + 𝐶6,𝑖

 Mixing of river flows

 𝑇𝑟𝑖𝑣𝑒𝑟
𝑚𝑖𝑥 =

𝑇𝑠𝑡𝑟1∗𝑄𝑠𝑡𝑟1 +(𝑇𝑠𝑡𝑟2∗𝑄𝑠𝑡𝑟2)

𝑄𝑠𝑡𝑟1+𝑄𝑠𝑡𝑟2

 River water temperature prediction


𝜕𝑇

𝜕𝑡
+ 𝑣 ∗

𝜕𝑇

𝜕𝑥
=

1

𝐴
∗
𝜕

𝜕𝑡
𝐴 ∗ 𝐷𝐿 ∗

𝜕𝑇

𝜕𝑥
+

𝑅𝑊

𝜌∗𝑐𝑝∗𝐴
∗ 𝑆

 Thermal generation model

 𝑇𝑜𝑢𝑡
𝑟𝑖𝑣𝑒𝑟 =

𝑃𝑡ℎ𝑒𝑟𝑚𝑎𝑙
𝑇𝑃𝑃

𝑄∗𝜌∗𝑐𝑝
+ 𝑇𝑖𝑛

𝑟𝑖𝑣𝑒𝑟
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Smart scheduling of water resources
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 Test system with a hydro cascade

 A cascade of four HPPs

 Thermal power plant

 1000 MW

 Minimum output of 30%

 Once-trough cooling

 Data based on Switzerland

 Aar rive basin hydrology/meteorology

 Swiss electricity prices
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Hydraulically coupled power plants
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Gjorgiev and Sansavini, Energy Conversion and Management, 2017
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 Apply the model for smart scheduling

 Results: Energy maximization

 Energy increase

 2.75 % to 6.37 % 

 Results: Revenue maximization

 Revenues increase

 3.60 % to 7.41 %

 Strong interdependence

 1.5 ⁰C increase in water temperature (when near allowed water temperature constraints)

can result in ~ 50% power output reduction, and in extreme cases, in plant shut down
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Smart management of water resources for improved power 

generation

Electric power outputs of the TPP
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Water policy constraints and 

cooling technologies

TPP
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 Assess how plant output is effected by the 

flexibility of the water temperature constraints

 Simulation of drought conditions

 Allow constrained relaxations

 Smart management

 Different cooling technologies

 Once-trough cooling

 Wet type cooling tower

 Considered water policy constraints

 Water temperature

 Water withdrawal and consumption

Gjorgiev and Sansavini, Applied Energy, 2018
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 Once-trough cooling

 No smart water management

 Water temperature constraint 

relaxations

 Relaxation of 1.5 °C in the 

water policy constraints 

prevents the curtailment of 

42%

01.06.2018G. Sansavini 12

Relaxation of water policies: 

impact on power generation
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 Once-trough cooling

 Smart water management

 Water temperature constraint 

relaxations

 Compared to the un-optimized 

case

 At least 7% increase in the converted 

energy

 For most drought scenarios much less 

relaxation than maximum allowed 1.5 

°C is needed

 Stable thermal power plant outputs
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Relaxation of water policies: 

impact on power generation
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 Wet type cooling tower

 No power generation reduction required

 Recommendations

 Use location specific characteristics for drought 

scenarios

 River specifics

 Long-term climate change prognosis

 River water temperature and flow

 Air temperature
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Water policy constraints relaxation 

effect on power generation
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 Wet cooling tower model

 Input

 Air temperature

 Air moisture

 Water temperature

 Output

 Tower efficiency

 Power plant output

 Climate change

 Long-term effect

 Optimal tower height
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Wet tower cooling and 

climate change

Ayoub, Gjorgiev and Sansavini, Energy, under review
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 Smart water management via co-optimization of energy and water resources 

can improve generation during droughts

 Constraint relaxation can significantly improve power generation but other 

constraints need to be considered also, i.e., ecology, hydro- and thermo-

peaking, hydropower market

 Once-trough cooling highly sensitive to water temperature changes

Wet-cooling towers more resilient to water temperature changes

 Need for systemic power system reliability analyses with droughts

 Generation availability

 Security of supply
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Conclusion and Future work



Thank you!

Questions?


