

Water-Energy Nexus: Impact on Electrical Energy Conversion and Mitigation by Smart Water Resources Management

Blaže Gjorgiev and Giovanni Sansavini Reliability and Risk Engineering Laboratory Institute of Energy Technology - Department of Mechanical and Process Engineering ETH Zurich

Water-Energy Nexus: Impact of Water Scarcity

- Water-energy nexus
 - Water is used in all stages of electrical energy generation
 - Electrical power is used for pumping, reprocessing and disposing of water
- Water scarcity and impact on power generation
 - Large loss of generation: USA (2007, 2008, 2012), France (2003, 2006, 2009), Germany (2003), Switzerland (2015)
 - Economic consequences
 - Reduced security of supply

Water-Energy Challenge – Policy Interdependency

Outline

- Water-Energy Nexus: impact of water scarcity
- Technologies and policies for thermal power plant cooling
- Smart management of water resources
- Interplay between policy constraints and cooling technologies
- Conclusions and future work

Cooling technologies for thermal power plants

- Once-through cooling
 - Efficient, simple, lower costs
 - Large withdrawals, effecting river water thermal regimes
- Wet-type cooling towers
 - Does not requires large withdrawals
 - Consumes the withdrawn water
- Dry cooling towers
 - Does not require water for cooling
 - Higher costs, large space, lower efficiency

nd Risk Engineering

Policies for thermal power plant cooling

- River wildlife protection
 - Release of thermal load
- River temperature constraints
 - Salmonid waters
 - $T_{max} \le 21.5 \ {}^{0}C$
 - $\Delta T \le 1.5 \,{}^{0}\text{C}$
- Water withdrawal and consumption
 - Based on local river concessioners
 - Consumption constraint to: 1% of current flow

Mitigating the vulnerabilities of water-energy nexus for thermal power plant cooling

- Can we influence river water temperature and flow?
 - Yes!
- How?
 - By manipulating reservoir releases
- A model for smart scheduling of water resources
 - Hydro generation model
 - Thermal generation model
 - River water temperature prediction
 - Mixing of river flows

Smart scheduling of water resources

- A model for smart scheduling of water resources
 - Hydro generation model $P_{H_{j,t}} = C_{1,j} * V_{j,t}^{2} + C_{2,j} * X_{j,t}^{2} + C_{3,j} * V_{j,t} * X_{j,t} + C_{4,j} * V_{j,t} + C_{5,j} * X_{j,t} + C_{6,i}$
 - Mixing of river flows
 - $T_{river}^{mix} = \frac{(T_{str1} * Q_{str1}) + (T_{str2} * Q_{str2})}{Q_{str1} + Q_{str2}}$
 - River water temperature prediction

•
$$\frac{\partial T}{\partial t} + v * \frac{\partial T}{\partial x} = \frac{1}{A} * \frac{\partial}{\partial t} \left(A * D_L * \frac{\partial T}{\partial x} \right) + \frac{R_W}{\rho * c_p * A} * S$$

Thermal generation model

•
$$T_{out}^{river} = \frac{P_{thermal}^{TPP}}{Q*\rho*c_p} + T_{in}^{river}$$

9

Hydraulically coupled power plants

- Test system with a hydro cascade
 - A cascade of four HPPs
 - Thermal power plant
 - 1000 MW
 - Minimum output of 30%
 - Once-trough cooling
 - Data based on Switzerland
 - Aar rive basin hydrology/meteorology
 - Swiss electricity prices

Gjorgiev and Sansavini, Energy Conversion and Management, 2017

Smart management of water resources for improved power generation

- Apply the model for smart scheduling
- Results: Energy maximization
 - Energy increase
 - 2.75 % to 6.37 %
- Results: Revenue maximization
 - Revenues increase
 - 3.60 % to 7.41 %
- Strong interdependence

1100 1000 900 900 800 700 600 500 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hour)

Electric power outputs of the TPP

1.5 °C increase in water temperature (when near allowed water temperature constraints) can result in ~ 50% power output reduction, and in extreme cases, in plant shut down

Water policy constraints and cooling technologies

- Assess how plant output is effected by the flexibility of the water temperature constraints
 - Simulation of drought conditions
 - Allow constrained relaxations
 - Smart management
- Different cooling technologies
 - Once-trough cooling
 - Wet type cooling tower
- Considered water policy constraints
 - Water temperature
 - Water withdrawal and consumption

Gjorgiev and Sansavini, Applied Energy, 2018

E *H* zürich

Relaxation of water policies: impact on power generation

- Once-trough cooling
 - No smart water management
 - Water temperature constraint relaxations

Available energy (MWh)

 Relaxation of 1.5 °C in the water policy constraints prevents the curtailment of 42%

Relaxation of water policies: impact on power generation

- Once-trough cooling
 - Smart water management
 - Water temperature constraint relaxations
- Compared to the un-optimized case
 - At least 7% increase in the converted energy
 - For most drought scenarios much less relaxation than maximum allowed 1.5 °C is needed
 - Stable thermal power plant outputs

Water policy constraints relaxation effect on power generation

- Wet type cooling tower
 - No power generation reduction required
- Recommendations
 - Use location specific characteristics for drought scenarios
 - River specifics
 - Long-term climate change prognosis
 - River water temperature and flow
 - Air temperature

Electrical energy conversion under different drought scenarios

Wet tower cooling and climate change

- Wet cooling tower model
 - Input
 - Air temperature
 - Air moisture
 - Water temperature

7

6

5

4

3

2

Projected Temperature Increase [°C]

- Output
 - Tower efficiency
 - Power plant output
- Climate change
 - Long-term effect
 - Optimal tower height

Conclusion and Future work

- Smart water management via co-optimization of energy and water resources can improve generation during droughts
- Constraint relaxation can significantly improve power generation but other constraints need to be considered also, i.e., ecology, hydro- and thermopeaking, hydropower market
- Once-trough cooling highly sensitive to water temperature changes
 Wet-cooling towers more resilient to water temperature changes
- Need for systemic power system reliability analyses with droughts
 - Generation availability
 - Security of supply

Thank you! Questions?

