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Water-Energy Nexus: Impact of Water Scarcity

= Water-energy nexus

= Water is used in all stages of electrical
energy generation

= Electrical power is used for pumping,
reprocessing and disposing of water

= Water scarcity and impact on power
generation

= Large loss of generation: USA (2007,
2008, 2012), France (2003, 2006, 2009),
Germany (2003), Switzerland (2015)

= Economic consequences
= Reduced security of supply
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Water-Energy Challenge — Policy Interdependency
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Outline

= Water-Energy Nexus: impact of water scarcity

= Technologies and policies for thermal power plant cooling

= Smart management of water resources

= |nterplay between policy constraints and cooling technologies

= Conclusions and future work
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Cooling technologies for thermal power plants

= Once-through cooling
= Efficient, simple, lower costs

= |Large withdrawals, effecting river water thermal
regimes

= Wet-type cooling towers
= Does not requires large withdrawals
= Consumes the withdrawn water R

= Dry cooling towers
= Does not require water for cooling
= Higher costs, large space, lower efficiency
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Policies for thermal power plant cooling

= River wildlife protection
= Release of thermal load

= River temperature constraints
= Salmonid waters

= Thax < 21.5 OC
= AT <15°C

= Water withdrawal and consumption
= Based on local river concessioners

= Consumption constraint to: 1% of
current flow
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!
Mitigating the vulnerabilities of water-energy

nexus for thermal power plant cooling

= Can we influence river water temperature and
flow?
= Yes!

= How?
= By manipulating reservoir releases
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= A model for smart scheduling of water resources
= Hydro generation model
= Thermal generation model
= River water temperature prediction
= Mixing of river flows

Plant cooling
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Smart scheduling of water resources

= A model for smart scheduling of water resources

= Hydro generation model
2 2
Py, = Cyj*Vit" +Cq ;% Xj ™ + G j* Vip * Xy +Cyj* Vi + G5 j * Xjp + Co

= Mixing of river flows

. TMiX (Tstr1*Qstr1) +(Tsera*Qstra)
river Qstr1+0Qstr2

= River water temperature prediction

oT T 1 0 oT Rw
. — * — = — % — * * — *
ot TV T Ao (A Dy ax) T prcp*A S

= Thermal generation model
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Hydraulically coupled power plants

= Test system with a hydro cascade
= A cascade of four HPPs

= Thermal power plant
= 1000 MW
= Minimum output of 30%
= Once-trough cooling

= Data based on Switzerland
= Aar rive basin hydrology/meteorology
= Swiss electricity prices

Gjorgiev and Sansavini, Energy Conversion and Management, 2017
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Smart management of water resources for improved power

generation

= Apply the model for smart scheduling

= Results: Energy maximization

= Energy increase
= 2.75%1t06.37 %

= Results: Revenue maximization

= Revenues increase
= 360%to7.41%

= Strong interdependence
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Electric power outputs of the TPP

= 1.5 °C increase in water temperature (when near allowed water temperature constraints)
can result in ~ 50% power output reduction, and in extreme cases, in plant shut down
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Water policy constraints and
cooling technologies

“R” — Reservoir

“N” — Natural inflow

“G” — Generator(s)

“Pc” — Condensate pump
“Pci” — Circulation pump
“Pmu”— Makeup water pump
“C” — TPP condenser

“In"” — River water inlet
“Out” — River water outlet

= Assess how plant output is effected by the
flexibility of the water temperature constraints
= Simulation of drought conditions
= Allow constrained relaxations
= Smart management
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= Different cooling technologies TPP
= Once-trough cooling | c
= Wet type cooling tower — T T eae
|
= Considered water policy constraints
= Water temperature

|
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= Water withdrawal and consumption :
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Gjorgiev and Sansavini, Applied Energy, 2018
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Relaxation of water policies:

impact on power generation {
= Once-trough cooling :

= No smart water management 214000 -

= \Water temperature constraint éozzz v
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Relaxation of water policies:
Impact on power generation =

Tmaxincrement (°C
o ©
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= Once-trough cooling
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Water policy constraints relaxation
effect on power generation

= Wet type cooling tower
= NoO power generation reduction required

= Recommendations

= Use location specific characteristics for drought
scenarios

River specifics

Long-term climate change prognosis
= River water temperature and flow

= Air temperature
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Wet tower cooling and
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Conclusion and Future work

= Smart water management via co-optimization of energy and water resources
can improve generation during droughts

= Constraint relaxation can significantly improve power generation but other
constraints need to be considered also, I.e., ecology, hydro- and thermo-
peaking, hydropower market

= Once-trough cooling highly sensitive to water temperature changes
Wet-cooling towers more resilient to water temperature changes

= Need for systemic power system reliability analyses with droughts
= Generation availability
= Security of supply

G. Sansavini | 01.06.2018 | 16



Thank you!
Questions?




