

www.ieadh

Overview of the water-energy-CCS nexus

ADDRESSING THE ENERGY-WATER NEXUS THROUGH R&D PLANNING AND POLICIES

Experts' Group on R&D Priority Setting and Evaluation (EGRD)

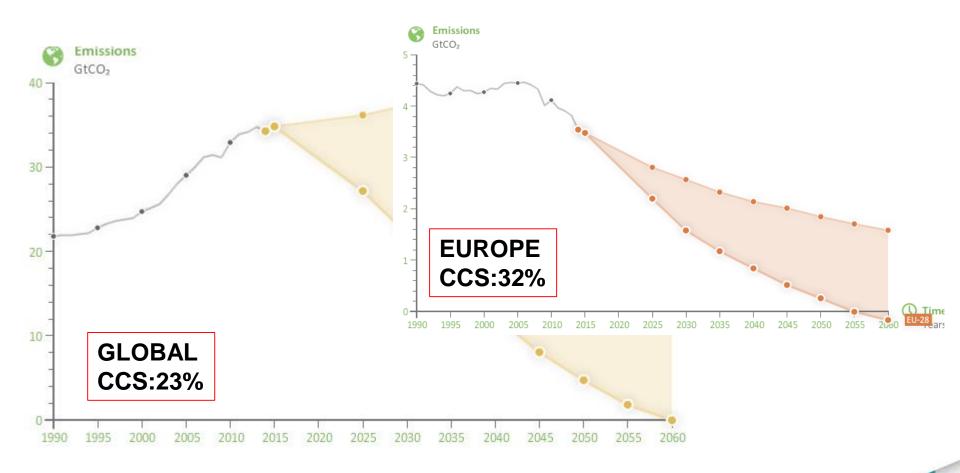
Brussels, 28/05/2018

Monica Garcia Technology Analyst-Capture Systems Greenhouse Gas R&D TCP

Greenhouse Gas R&D TCP

Greenhouse Gas R&D TCP (2)

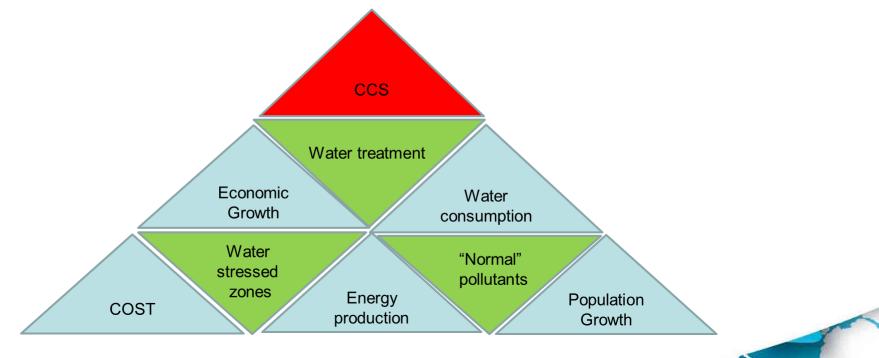
- **Aims:** Evaluate technology options for greenhouse gas mitigation from energy and industrial systems
- Focus: Carbon dioxide capture and storage (CCS) and utilisation (CCS-US)


Activities

- **Technical studies:** >300 reports published on all aspects of CCS
- Industry conferences: GHG Control Technologies, Post-Combustion Capture
- International research networks: Risk Assessment/ Management, Monitoring, Modelling, Environmental Research, Social Research, Oxycombustion, Solid Looping, Cost of CCS
- Advice: Peer reviews (e.g. USDOE, USEPA, CO2CRC), international regulatory developments (e.g. UNFCCC, London Convention, ISO TC265)
- Collaborations: IEA, CSLF, CCSA, EU ZEP, CSIRO, others
- International CCS summer schools

Why do we need CCS- CCUS?

CO₂ emissions reductions potentials



Source: IEA below two-degree (B2DC) scenariohttps://www.iea.org/etp/explore/

The issues

- Water and energy are indispensable
- Environmental agreements are indispensable
- You need water to produce energy and energy to extract/produce water

Terminology

- Water
 - Usage
 - Consumption
 - Withdrawals

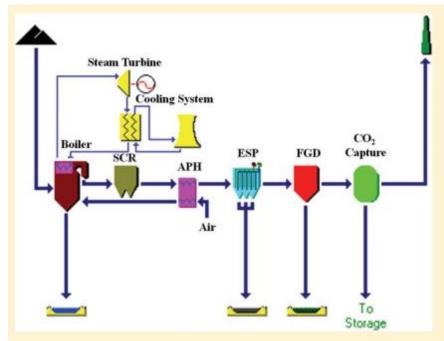
The evil is in the details!

Carbon Capture and Storage (CCS)

- Post-plant combustion using liquid solvents
- Xx Add more here???

The water-energy-CCS nexus

- How are these connected?
- What are the boundaries?


Electricity generation

- Boiler
- Steam turbine
- Condenser
- Wet cooling tower

Environmental control

- SCR
- Site specific, ESP age of plant
- FGD
- NO_x removal
- SO₂ removal
- CO₂ removal

Coal power plant with CCS

Source: Zhai, Rubin and Versteeg (2011), Environmental Science and Technology.

The effects of CCS on water use

Water distribution in a supercritical power plant

Operation Unit	Without carbon capture				With carbon capture			
	Water withdrawals		Water consumption		Water withdrawals		Water consumption	
	(Liters/MWh)	(%)	(Liters/MWh)	(%)	(Liters/MWh)	(%)	(Liters/MWh)	(%)
Boiler	230.9	9.6	0	0.0	333.1	7.6	0	0.0
SCR	3.8	0.1	0	0.0	3.8	0.1	0	0.0
FGD	234.7	9.8	234.7	14.0	340.7	7.8	340.7	11.1
Carbon capture system	0	0.0	0	0.0	83.3	1.9	30.3	0.9
Cooling system ⁴								
steam cycle cooling	1930.6	80.5	1449.8	86.0	1676.9	38.3	1260.5	40.9
carbon capture cooling	0	0.0	0	0.0	1938.1	44.3	1453.5	47.1
Total plant water use	2400.0	100.0	1684.5 ^b	100.0	4379.9	100.0	3085.0 ^b	100.0

Source: Zhai, Rubin and Versteeg (2011), Environmental Science and Technology.

Water use increases by >80% with carbon capture

Issues for consideration

Other plant configurations Water-stressed locations Impacts of regulation Associated costs

Examining the water-energy-CCS nexus

- GHG TCP studies
 - Extracting formation water from CO₂ Storage (2012)
 - Evaluation and analysis of water usage of power plants with CO₂ Capture (2010)
 - Understanding the cost of reducing water usage in coal and gas fired power plants with CCS (2019)
 - Collaborative project with the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australia

Extracting formation water from CO₂ storage

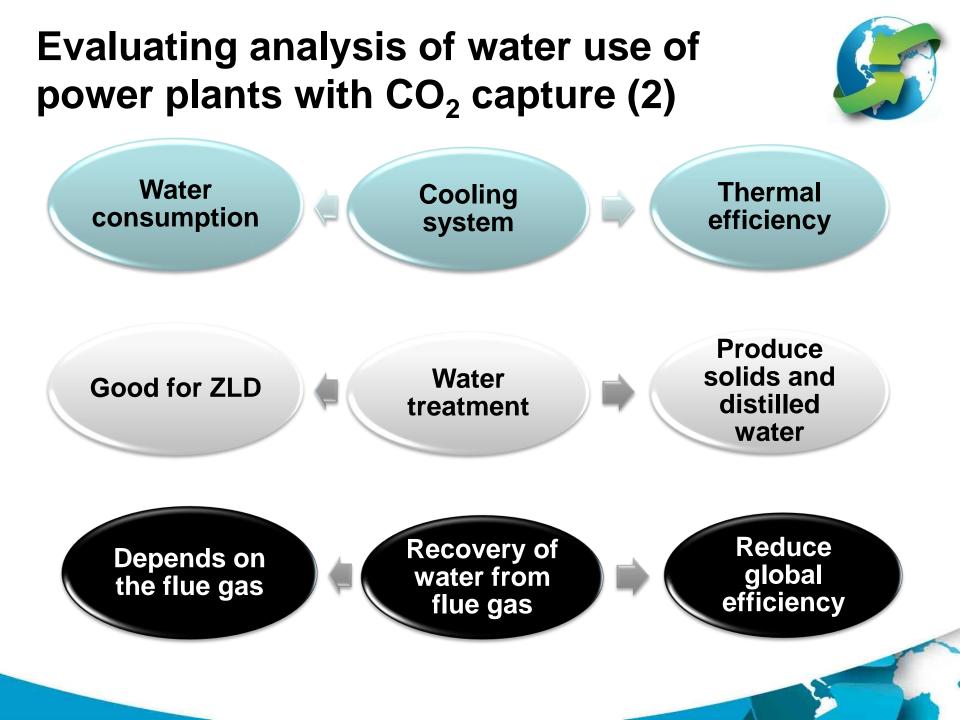
Scope

- Deep saline formations, good potential for CO₂ injection
- Pressure management by water extraction
- Use/disposal of water extracted
- Identify research priorities

Findings

- Depends on storage site characteristics
- Generally water extraction increases storage capacity
- Use of extracted water is unlikely to be financially beneficial
 Locations: offshore or coastal areas
 - Conditions: combination of energy costs, water availability, quality of extracted water, other parameters

Evaluating analysis of water use of power plants with CO₂ capture



Scope

- Review techniques to reduce water consumption in power plants
- Compare water usage with and w/o CO₂ capture
- Evaluate the costs with and w/o CO₂ capture, with and w/o water reduction techniques

Evaluation

- Air cooling
- Wastewater treatment
- Water recovery from flue gas

Evaluating analysis of water use of power plants with CO₂ capture (3)

- Effects of plant location on CCS cost
 - Plants: Supercritical pulverised coal (SC PC) boiler and natural gas combined cycle (NGCC) power plants, with and without CO2 capture (solvent scrubbing)
 - Locations: Netherlands, Poland (USA, dry and wet), Canada, South Africa (inland, coastal), Australia, India, China, Japan, Indonesia, Chile, Brazil, Egypt

Findings

- Costs of CO₂ capture is highly dependent on location
- Cooling systems, ambient conditions, fuel quality and price, water availability, are of great importance
- Local economic parameters impact on the plant cost

Evaluating analysis of water use of power plants with CO₂ capture (4)

- Incentives to optimize the nexus
- Regulations
 - Best available technology: closed-loop cooling systems, dry cooling (air-cooled condensers)
 - o Not always meeting regulations! E.g. FGD
 - Legislation, permitting: Site specific
 - Zero-liquid discharge (ZLD): No need to meet discharge limits - revenue from secondary products (e.g. China)

Source: IEA Clean Coal Centre TCP (2018), Wastewater regulations and issues for coal-fired power plants.

Collaborative project with CSIRO

Objectives

- Techno-economic evaluation of water usage along the whole CCS chain
 - Develop a methodology (applied to the Netherlands)
 - o Study the whole range of locations
- Understand the <u>potentials</u> and <u>challenges</u>
 - o Using extracted water in CCS and power plants
- Inventory of best-case integration strategies

Summary

- Power plants require substantial quantities of water
 - The overall use can be mitigated through CO2 capture and re-use of extraction water
- Costs and efficiencies of the energy-water-CCS nexus is highly dependent on site characteristics and economic conditions
 - The GHG TCP/CSIRO project will provide additional conclusions on the reuse of extracted water in the power plant

For more information

Research areas

- Water usage in CCS
- CCS in industry (update soon!)
- Emerging CO2 capture technologies
- Fuel cells
- Cost of CCS
- Environmental impact of CCS (emissions) and risks

Monica.Garcia@ieaghg.org

Get in touch!

