Positive Bioenergy and Water Relationships

Constance Miller, Global Bioenergy Partnership (GBEP) <u>Constance.miller@fao.org</u>

Overview

- About the Global Bioenergy Partnership (GBEP)
- GBEP Activity Group 6 Bioenergy and Water
- Integrative planning, best management practices, bioremediation and control of invasive species
- Agroforestry, intercropping and rotational cropping

The Global Bioenergy Partnership (GBEP)

- Founded in 2005 as a G8+5 Partnership at the G8 Gleneagles Summit
- **Partners:** 23 countries + 14 international organizations
- **Observers:** 28 countries + 12 international organizations
- GBEP Secretariat is hosted at the FAO in Rome

GBEP Sustainability Indicators for Bioenergy

	Environmental pillar	Social pillar	Economic pillar
-	1. Life-cycle GHG emissions	9. Allocation and tenure of land for new bioenergy production	17. Productivity
	2. Soil quality	10. Price and supply of a national food basket	18. Net energy balance
	3. Harvest levels of wood resources	11. Change in income	19. Gross value added
	4. Emissions of non-GHG air pollutants, including air toxics	12. Jobs in the bioenergy sector	20. Change in consumption of fossil fuels and traditional use of biomass
	5. Water use and efficiency	13. Change in unpaid time spent by women and children collecting biomass	21. Training and re- qualification of the workforce
	6. Water quality	14. Bioenergy used to expand access to modern energy services	22. Energy diversity
	7. Biological diversity in the landscape	15. Change in mortality and burden of disease attributable to indoor smoke	23. Infrastructure and logistics for distribution of bioenergy
-	8. Land use and land-use change related to bioenergy feedstock production	16. Incidence of occupational injury, illness and fatalities	24. Capacity and flexibility of use of bioenergy

GBEP Activity Group 6 – Bioenergy and Water

- Activity Group of the Working Group on Capacity Building (WGCB)
- Led by the IEA Technology Collaboration Programme on Bioenergy (Bioenergy TCP)
- Completed its activities November 2017

GBEP AG6: History

Global Bioenergy Partnership

Good management of resources - benefiting from complementarity of different land use systems - can deliver food, materials and bioenergy AND improve the state of water.

GBEP AG6: Goal

Identify and disseminate ways of integrating bioenergy systems into agriculture and forestry landscapes to improve sustainable management of water resources, including waste water.

Examples of Positive Bioenergy and Water Relationships

- Contributions from 11 countries
 across six continents
- Selected contributions presented at workshop in August 2015
- All contributions presented in report that was published in February 2016
- Selected contributions also published in scientific journals

Integrated planning, best management practices, bioremediation and control of invasive species

Case study 1 – USA:

Short rotation poplars for bioenergy and phytotechnologies

- Case study from WWW, Stockholm (2017)
- Selection of genotypes for specific traits can maximize benefits of plantations in different contexts
- <u>Water-stressed sites</u> water-conserving genotypes maximize biomass production without causing detrimental impacts to water supply and/or quality
- <u>Water-rich sites</u> water-using genotypes provide positive ecosystem services when used to treat wastewater, e.g. use of poplar plantations for phytoremediation, to treat leachate from landfill sites
- Provide multiple ecosystem benefits

Case study 1 – USA: Short rotation poplars for bioenergy and phytotechnologies

Global Bioenergy Partnership

Source: http://www.un.org/sustainabledevelopment/sustainable-development-goals/

Waste to energy and water-smart processes

Case study 2 – Paraguay:

Vinasse concentration for water use reduction

- Vinasse is a by-product of ethanol production
- It is traditionally stored in lagoons, with potential to contaminate surrounding water bodies
- Solution concentration of vinasse to give:
 - Water with ideal pH to be reused in fermentation process
 - Concentrated vinasse used for fertirrigation of sugar cane

Case study 2 – Paraguay:

Vinasse concentration for water use reduction

Benefits:

- Reduced water use by ethanol plant (as water is re-used)
- Reduced contamination of water bodies
- Energy and cost savings for fertirrigation (as concentrated vinasse is only 25% of original volume)
- Higher sugar cane yield (due to fertirrigation) 50% expected increase over 5-year period

Case study 3 – China: Biogas from livestock waste

- Installation of biogas plants in piggeries to reduce water pollution from pig waste and produce bioenergy
- Digestate is utilized as liquid fertilizer in arable land or paddy fields
- Livestock breeding represents the main agricultural pollutant in Lake Tai, where extraction of water for domestic use was suspended in 2007 due to worsening quality

Case study 3 – China: Biogas from livestock waste

- Co-benefits:
 - Increased rice yield
 - Reduced fertilizer costs
- Important factors
 - Availability of arable land accepting digestate in the vicinity of piggeries
 - Government support for installation of biogas plants

Agroforestry, intercropping and rotational cropping

Case study 4 – Australia: Integrated tree crop systems

- Western dryland Australia suffers from soil and water degradation from salinity due to reduced plant water use under annual crops and pastures
- Mitigation of salinity required to:
 - maintain agricultural productivity of the region; and
 - protect and restore the terrestrial and aquatic biodiversity of the region
- Planting of integrated tree crops to reduce discharge of saline groundwater into waterbodies

Case study 4 – Australia: Integrated tree crop systems

- Benefits:
 - Improvements in water quality
 - Biomass/bioenergy production
 - Carbon sequestration and mitigation of GHG emissions
- Challenges:
 - Lack of stability in political and investment environment
 - Development of commercial-scale infrastructure

Key Messages

- AG6 work showed encouraging variety of water-efficient and positive-water-balance bioenergy options, both in terms of supply and geographical distribution
- There are significant barriers to "mainstreaming" such practices, however
- A prerequisite is a repository of data on these practices by "trusted" actors. GBEP has a role here, together with e.g. FAO, IEA, IEA Bioenergy TCP, IRENA

Thank you

More information:

- Constance Miller: <u>constance.miller@fao.org</u>
- Göran Berndes: goran.berndes@chalmers.se
- Uwe Fritsche: uf@iinas.org
- IEA Bioenergy TCP: <u>http://www.ieabioenergy.com/</u>

 www.globalbioenergy.org/programmeofwork/workinggroup-on-capacity-building-for-sustainablebioenergy/activity-group-6/it/

