The European Commission's science and knowledge service

32

3

Joint Research Centre

de.

Managing energy and water through modelling

Ignacio Hidalgo González

JRC Directorate C – Energy, Transport and Climate – Knowledge for the Energy Union Unit

Addressing the energy-water nexus through R&D planning and policies IEA Experts' Group on R&D Priority Setting and Evaluation (EGRD) Brussels, 28-29 May 2018

Why does the JRC needs water-energy models?: the WEFE project

The interlinkages between the water and energy sectors may affect several EU policies:

• Water Framework Directive, Common Agriculture Policy, the Energy Union, EU Development Policy, Clean Energy for EU Islands...

The JRC's Water-Energy-Food-Ecosystems (WEFE) nexus project provides scientific-based evidence for such policy considerations

A part of this project studies the water-energy nexus using model-based analyses

Goals of the water-energy modelling activities within WEFE-Energy

Goal: assess the current and future water-energy nexus to support impact assessments related to the Energy Union

- Understanding the impacts of water resources on the operation of the energy system, and vice versa
- Analysing and projecting water and energy requirements in different regions
- Producing insights for a better management of water and energy resources

Current work streams

Modelling of the water-energy nexus at continental scale

Modelling of the water-power nexus at regional (multicountry) scale

Modelling of the water-energy nexus at smaller scales (islands)

Current work streams

Modelling of the water-energy nexus at continental scale

Modelling of the water-power nexus at regional (multicountry) scale

Modelling of the water-energy nexus at smaller scales (islands)

Modelling the water-energy nexus at continental scale: approach

Goal: to estimate projected fresh water consumption from the whole energy sector, combining:

Energy system-wide projections at country level

- Primary energy production: oil and gas extraction, coal and uranium mining
- Energy transformation: refineries and thermal power plants

Water withdrawal and consumption factors for different energy technologies

Additional energy sector data for

- Better estimating water consumptions from each energy sub-sector
- Downscaling to sub-national levels and sub-annual periods

Modelling the water-energy nexus at continental scale: data sources and needs

Energy system-wide projections at country level

- Europe: <u>EU Energy Reference Scenario</u>
- Africa: Africa Energy Outlook 2040, WEO, AEO, BP Outlook, JRC GECO, KTH projections

Water withdrawal and consumption factors for different energy production and transformation processes

JRC literature review and own estimations

Additional energy sector data

- JRC own data on power plants
- Commercial: oil and gas fields (Rystad Energy), mining projects (S&P Global), refineries (Oil and Gas Journal)
- Public: ENTSO-E, WRI, Energydata.info, USGS

Modelling the water-energy nexus at continental scale: examples of results

Projected (2000-2050) fresh water demand at country level from

- Primary energy production: oil and gas extraction, coal and uranium mining
- Energy transformation: refineries and thermal power plants

Modelling the water-energy nexus at continental scale: examples of results

Additional results for Europe

- Downscaled water demands to NUTS-2 (or to facility level)
- Downscaled water demands to monthly level (ongoing work)

Current work streams

Modelling of the water-energy nexus at continental scale

Modelling of the water-power nexus at regional (multicountry) scale

Modelling of the water-energy nexus at smaller scales (islands)

Goal: integrated water and power system modelling to understand the impacts of water resources on the operation of the power system, and vice versa

LISFLOOD: hydrological rainfall-runoff model that simulates the hydrological processes at catchment level

Dispa-SET: open source (EUPL) model of large-scale power systems

- Dispa-SET MTHC: mid-term hydrothermal coordination module
- **Dispa-SET UCD**: unit commitment and dispatch module

Modelling the water-power nexus at regional scale: approach

Step 1:

LISFLOOD provides water inflows and water demands into the Dispa-SET model, which constraint the operation of hydropower (storage levels and output) and thermal power plants (cooling).

Step 2:

Dispa-SET MTHC runs in deterministic or stochastic mode at daily, weekly or monthly time steps during one or several years in order to provide the management of water resources (reservoir levels of hydropower plants) in the mid-term.

Step 3:

Dispa-SET UCD runs at hourly time steps during a target year producing:

- 1) the power schedule and dispatch per unit,
- 2) water-related outcomes (e.g., water withdrawn and consumed by power plants, water stress indexes),
- 3) economic results (proxies of power prices, generation costs, water values),
- 4) emissions from thermal plants.

Step 4 (ongoing work):

Ideally Dispa-SET and LISFLOOD should be run iteratively until reaching a stable solution. The stopping criteria may be based on the reservoir levels so that a set of adequate and optimised levels is derived.

Modelling the water-power nexus at regional scale: data needs and sources

Highly complex and data intensive Only part of the data available

Thermal power plant data Plant name, location (longitude and latitude) Technology type and fuel Installed capacity Efficiencies at different loads Minimum load Ramp rates, start-up times, minimum up and down times Start-up costs CHP (power to heat ratio, maximum heat production, heat storage) Water withdrawal and consumption factors Cooling system Water source (location and type)	Hydropower plant data Plant name and location (longitude and latitude of the dam) Technology type (reservoir, pumped storage, or run of river) Installed capacity Dam height Head Volume-head relation Pumping efficiency Reservoir capacity (volume or energy) Minimum and maximum storage levels Minimum and maximum outflow Network data (connected dams)	Time series Power load per zone Historical power generation per zone and unit Outages per unit Fuel prices Availability factors of renewable power plants (wind, solar, run of river) Hydropower units (inflows, outflows, spillages, minimum and maximum flows, reservoir levels) Interconnection capacities between zones
--	---	--

Daily power generation per scenario and fuel type

Operational results

Power schedule and dispatch, storage levels, load shedding, curtailment, flows through interconnections

Hourly power dispatch and unit commitment of hard coal units

Economic results

Average electricity cost, water values, system costs

System costs per scenario

Changes in production per scenario

Water values per catchment, period and scenario; fuel prices (bottom right)

Environmental results

Water withdrawn and consumed, water stress indexes, spillages, emissions from thermal plants

Water withdrawal and consumption of selected power plants

Simulated policies

Limits on withdrawals, water temperatures, allowed stress indexes

Available examples

- Case studies for Greece and the Iberian Peninsula
- Ongoing work on African power pools (WAPP and SAPP)

Current work streams

Modelling of the water-energy nexus at continental scale

Modelling of the water-power nexus at regional (multicountry) scale

Modelling of the water-energy nexus at smaller scales (islands)

Modelling the water-energy nexus at smaller scales: approach

Goal: to study the water-energy nexus in "small" systems, such as EU islands where significant desalination capacity is needed (e.g. Baleares Islands)

- Maximise the profit of the combined water-energy system
- Constraints on
 - Fresh water balance
 - Water storage balance
 - Power balances (with and without interconnections)
 - Water flows and storage
 - Desalination capacity
 - Power (energy) system constraints

Modelling the water-energy nexus at smaller scales: data needs and sources

Power system data

- Characterisation of power plants, renewable profiles, power loads and interconnections with the island system
- Fuel prices
- Regulated and market power prices

Other energy system data

• Characterisation of other energy infrastructure (refineries, mines)

Water system data

- Available supply
- Total and sectoral demand
- Water tariffs
- Water infrastructure and desalination plants

Modelling the water-energy nexus at smaller scales: expected results

Power system

- Power plant scheduling and dispatches
- Imports and exports from mainland grid
- Revenues and costs from power generation
- Water values

Other energy system (refineries, mines)

• Water use

Water system data

- Fresh water supply schedules
- Storage levels
- Revenues and costs from water supply

Some challenges and open issues

Model-related

- Finding the right tradeoff between model complexity and "better" results
- Implementing a smooth interaction between models

Data-related

- Availability and coverage: water sector (infrastructure and demand), nonpower energy sectors
- Quality: gaps, frequency, length of the time series, inconsistencies and uncertainties

We hope that this workshop will help us to obtain some insights on how to overcome these challenges!

Thanks

Any questions?

You can find me at Ignacio.HIDALGO-GONZALEZ@ec.europa.eu

