# Policy pathways in support of EE/RE deployment: barriers, solutions and lessons learned

Vladimir Hecl,UNFCCC, IEA, Policy Best Practices for Accelerating the Deployment of Low-Carbon Energy and Climate Technologies, 23 September 2014.



# Some relevant work of the TEC in 2014

# **1.Technology needs of developing countrie**

# 2.Barriers and enabling environments

- 3. Technology road maps
- 4. Modalities on linkages with other institutional arrangements
- 5.Research, development and demonstration (RD&D)
- 6. Joint annual report of the TEC and the CTCN
- 7.TEC information platform (TT:CLEAR)

# 8. Stakeholder engagement

9.Key messages to COP



#### Technology needs assessments identified by NAI Parties to the Convention

#### Technology needs assessments – deliverables:





### I. Prioritization of sectors - mitigation:

- The energy sector was the most prioritized mitigation sector, followed by agriculture, forestry and other land use sector, and waste sector;
- Within the energy sector, the most prioritized sub-sectors were energy industries and transport.





- I. Prioritization of technologies mitigation:
- Energy industries subsector solar PV, wind turbines, SHPP, and CHP (70% RET);
- **Transport subsector** modal shift, fossil fuel switch technologies and infrastructure improvement technologies;
- Industrial subsector high efficient electric motors and brick production.





#### As of 2014 following TNA reports are available:

## ETC:

- 1. Armenia (2003, part of the upcoming project in 2015);
- 2. Azerbaijan (2001, 2012 incl. TAP);
- 3. Georgia (2002, 2012 incl. TAP);
- 4. Kazakhstan (2013, TAP in 2015);
- 5. Moldova (2002, 2012 incl. TAP);
- 6. Mongolia (2013 incl. TAP);
- 7. Tajikistan (2003);
- 8. Turkmenistan (2006, part of the upcoming TNA round in 2015),
- 9. Uzbekistan (2001, part of the upcoming TNA round in 2015)

#### SEMED:

- 1. Egypt (2001, part of the upcoming TNA round in 2015);
- 2. Jordan (2004, part of the upcoming TNA round in 2015);
- 3. Morocco (2012 incl. TAP);
- 4. Tunisia (2001, part of the upcoming TNA round in 2015)



### II. Barrier analysis - mitigation:

• The most frequently identified mitigation barriers were economic and financial barriers, followed by

technical, policy, legal and regulatory barriers, and information and awareness barriers.





#### **II.** Barriers identified by ETC and SEMED Parties in their TNAs (highlight)

All of the characteristics, which are common for the "emerging market" countries, are generally represented:

- Low liquidity (as compared to developed markets),
- Low transparency of the market,
- Considerable price fluctuations that increase risks,
- Insufficient supporting legislation.

There are a number of **barriers** of economic, financial, institutional, personnel, organizational, legal and information nature hindering technology transfer and implementation of priority projects. The principle barriers are:

- Weak financial sector and absence of the necessary capital,
- High transaction costs,
- Low solvency of enterprises and affordability of population,
- Low demand for environmentally sound technologies,
- Inadequate institutional framework,
- Low level of technological and economical awareness among stakeholders.



#### **Category specific barriers**

## Institutional architecture:

- Legacy of central planning policy,
- Insufficient coordination between relevant ministries and stakeholders,
- Governmentally owned energy utilities acting often as national monopolies,
- Prevailing interests of large energy producers,
- Limited space for small private owned energy enterprise in the energy.

# Legal:

- Lack of state policies and action plans for climate technology development,
- Absence of national standards for energy consumption.

## Market specifics:

- Low rates of reforms in energy sector.
- Limited scale of EE/RE projects compare to existing traditional fuel oriented infrastructure,
- Low prices of traditional energy resources,
- Macro-economic climate high debts and non-payments,
- Underdeveloped competition.
- Lack of business and risk management experience.



#### Technology specific barriers identified in new TNA reports (2012-2013)

#### **Market imperfection**

• Installations done in commercial or public sector, while <u>residential market is not developed</u>. This is partly due to low income of residents. Need to introduce some cheaper, more affordable equipment.

#### **Network failures**

- Donor projects are not linked with each other and <u>aligned to have a common vision</u> to reinforce the mutual effect.
- Culture of consultation with various stakeholders is missing, including with users of equipment to share their experiences and lessons learned.

#### Social cultural and behavioral

- Perception of RE technologies necessarily **requiring subsidies and spending**, that often imposes additional burden on public money and hampers economic development.
- There may be a **need for comprehensive and actual economic analyses** that would show the total effect of RE/EE technology deployment on the macro-economy.



## **III.Technology action plans**

TAPs recommend an enabling framework for the development and transfer of prioritized technologies at the desired scale.

- TAPs contain actions for accelerating the development and transfer of a prioritised technology within the country.
- Parties grouped TAP actions in categories such as:
  - Policy and regulatory actions;
  - Economic and financial actions;
  - Infrastructure requirements;
  - Capacity building;
  - International cooperation actions.



Some of the measures identified by Parties in ther TAPs

- **Develop vision and strategy** on national level for EE/RES technologies,
- Strengthen institutional architecture (national, regional agencies),
- Develop supporting legislation,
- Develop relevant standards and norms,
- **Coordination** between market participants
- Networking between donors, governments, NGOs and other stakeholders,
- **Conduct pilot project** (test technologies, develop maintenance techniques, promote awareness),
- Develop and employ special purpose financial products, credit lines, loans etc.,
- Train particular target groups



#### IV. Distribution of project ideas per mitigation and adaptation sectors.





#### Some experinces and lessons learned from TNA projects implemented

- **Political support** on national or regional level is crucial for TNA implementation,
- <u>High priority for government and/or municipality</u> of the proposed project, or particular technologies involved in the project, is very important to gain public recognition and support.
- Interest of and incentive for national stakeholders to **build national capacities** in implementing projects,
- Availability of domestic public or private funding is often a key driver behind initial implementing efforts,
- Probability of a successful implementation tends to be high where there is a strong signal from investors regarding the
  availability of financing for the specific prioritized technologies.
- A high investment and/or low rate of return can hamper the attractiveness for financial providers to support the project,
- Availability of a pro-active and knowledgeable project champion supporting the investment process by its capacity and, if
  possible, by funds was considered of a paramount importance for the implementation process,
- Creating an efficient <u>mechanism for delivering targeted information about funding opportunities</u> linked to prioritized technologies would be an important implementation support factor.



Some **success factors** facilitated implementation of the projects from the TNAs:

- Availability of domestic and/or international funding,
- Ability to reach political and institutional consensus when deciding on implementation priorities,
- Involvement of relevant state authorities in the project development from the beginning,
- A pro-active and knowledgeable **project champion** by his capacity and also as s source of funding.



Some **failure factors**, which prevented projects from implementation :

- **No state authority involved** when proposing the projects which resulted in the lack of ownership of state authorities and hence no interest to implement the prosed projects,
- Environmental issues <u>not considered a priority</u>,
- <u>A high investment and/or low rate of return</u> of the proposed projects,
- Low visibility of projects to possible donors,
- · Low attractiveness of some innovative technologies due to availability of cheaper alternatives,
- Unclear ownership of facilities.



# Thank you for your attention

