

Mel Slade Bangkok, 2 April 2019

6. Utilities: Lighting and other urban services

6. Utilities: Lighting and other urban services

Trainer(s): Mel Slade

Scenario: Local residents are complaining about dark and unsafe streets

Question: What can you do to reduce energy use in public lighting and improve service delivery?

6. Utilities: Lighting and other urban services

1. Energy use in Lighting

Energy use and impacts,

5 mins

2. Strategies for energy efficiency

Lighting service, technology replacement, management systems

15 mins

3. Activity

20 mins

Other Urban Services

- **Waste management:** waste generation, impacts, energy recovery opportunity, technologies, and policies
- **District energy systems:** district energy concept; waste heat integration and sector coupling

20 mins

1. Energy use in lighting

Where to start?

Streetlight costs Other costs

Public Budget Quezon City, Philippines

Streetlight costs Other costs

Public Budget Smaller municipalities, India

Streetlight costs Other costs

From a national point of view, costs of public lighting are small. However it is a big strain on local budgets.

Need to sustain and improve lighting services

Where to start?

Tools

hat are the steps?

Road safety: 30% reduction in collision, 43% reduction in night time accidents

Lower crime: 7% reduction in New York, 39% reduction in UK

Inability to sustain optimum lighting service affects important social service provided by public lighting. Expanding these are the common goals of a growing municipality

iea 🎳 🤵

Where to start? Tools What are the step:

Electricity Consumed per km of Lit Roads [kWhe/km]

Where to start? Tools What are the step

Manage systems better

Replace technology

Install smarter systems

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Replace lamps with more efficient technologies Install smarter lighting management systems

Where to start? Tools What are the step

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Saving energy can already be done with same technologies, using only better design

ere to start?

What are the steps?

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Proper maintenance reduce excess electricity use caused by faulty fixtures

Where to start? Tools What are the step

Replace technology

 Replace lamps with more efficient technologies LED lamps significantly more efficient than other street lighting technology

Where to start? Tools What are the st

Replace technology

 Replace lamps with more efficient technologies Case Study: Ann Arbor, USA pilot project spent 472\$ additional cost per fixture but pays back in 4.7 years, resulting to 97% positive response

80%

Energy use reduction

100\$
Saving per
fixture

2200 tons Avoided CO2 emissions

Replace technology

 Replace lamps with more efficient technologies

• Case Study: Before and after illustration of street lighting retrofit in Los Angeles, CA that saw the installation of over 140,000 LEDs

Where to start? Tools What are the step

Replace technology

 Replace lamps with more efficient technologies • **Case Study:** Potential in India to save on street lighting by 2020 using the current generation LED lamps in replacing the existing lamp technologies.

Where to start? Tools What are the ste

Install smarter systems

 Install smarter lighting management systems • **Case Study:** Ho Chi Minh and Quy Nhon City, Vietnam. Dimming system (bipower ballasts) in 30000 streetlights during low traffic, cutting energy consumption by 40%

Where to start? Tools What are the steps?

1. Assess system and set goals

(Part 1 – Energy use in lighting)

(Part 2 – Strategies)

4. Monitor and Evaluate

(later in Session 9)

2. Strategies for energy efficiency. Delivering change

DELIVERY MODEL EXAMPLES 3. Deliver SITUATION ACTION • QUEZON CITY, Does the **PHILIPPINES** Allocate funds by • ONTARIO, CANADA municipality have Municipal establishing sufficient resources **Financing** (CITIES OPTING budget line item to fund the Model FOR THE DESIGNfor project program itself? **UPGRADE-**TRANSFER MODEL) • AEL. INDIA • EESL IN VIZAG, Negotiate an Are there ESCOs Private ESCO INDIA energy service active or planning Model • ONTARIO, CANADA performance to be active in **Public ESCO** (CITIES OPTING contract with the local market? Model FOR SHARED **ESCOs SAVINGS EPC** MODEL) Determine Are leasing or eligibility criteria PPP Model • GUADALAJARA, private financing and negotiate MEXICO Lease to Own programs financing Model • BIRMINGHAM, UK available? agreements

What are the steps?

2. Strategies for energy efficiency. Delivering change

Where to start? Tools What are the steps?

3. Deliver

Type of Risk	Risk Manifestiation	Risk mitigation measures
Technical risk	Failure of luminaries	?
Performance risk	Failure of installed lighting system	?
Financial risk	Failure to make payments	?

IEA 2019. All rights reserved.

Source https://www.esmap.org/node/57252

What are the steps?

3. Deliver

ACTIVITY

Take 15-20 minutes to discuss possible risk mitigation methods in delivering energy efficient public lighting

Source https://www.esmap.org/node/57252 IEA 2019. All rights reserved.

Where to start

10019

What are the steps?

3. Deliver

Type of Risk	Risk Manifestation	Risk Mitigation Measure	Example
Technical Risk	Failure of LED luminaires	Obtain product warranty from LED luminaire manufacturer	Ontario, Canada
		 Extensively test luminaires with external technical assistance 	Quezon City, Philippines
		Obtain third-party certification of luminaires	Guadalajara, Mexico
Performance Risk	Failure of installed LED system	 Conduct extensive pilots Outsource risk to private sector by procuring "lighting service" with performance penalties in PPP contract Outsource risk to private sector contractors by using EPC contracts Conduct own maintenance Extensively search and procurement of a trusted operator 	Quezon City, Philippines Birmingham, United Kingdom EESL in Vizag, India Guadalajara, Mexico Ontario, Canada
Financial Risk	Failure to make payments	 Secure state government guarantees Secure commercial bank guarantees Work with private sector with substantial resources 	Guadalajara, Mexico AEL, India Birmingham, United Kingdom

Source https://www.esmap.org/node/57252

Key Resources. Lighting

Tracking Clean Energy Progress https://www.iea.org/tcep/buildings/lighting/

SEAD Street lighting tool https://superefficient.org/tools/street-lighting-tool

United 4 Efficiency https://united4efficiency.org/products/lighting/

IEA's Technology Collaboration Platforms https://ssl.iea-4e.org/

lites.asia (last update 2017) http://www.lites.asia/

Key Resources. Lighting

Guide for energy efficient street lighting installations https://ec.europa.eu/energy/intelligent/projects/sites/ iee-projects/files/projects/documents/estreet_e_street_guide_en.pdf

Efficient public lighting guide (South Africa) http://www.cityenergy.org.za/uploads/resource_1 7.pdf

Proven Delivery Models for LED Public Lighting https://www.esmap.org/node/57252

4. Other urban services

Waste Management

4. Waste Management. Trends

Solid waste generation is often driven by purchasing power. Their subsequent collection would be crucial in the energy recovery.

4. Waste Management. Impacts

Where to start?

ools

Vhat are the steps?

Bantar Gebang Landfill, Indonesia https://www.dailymail.co.uk/travel/travel_news/article-4455690/Images-reveal-life-inside-Indonesian-rubbish-dump.html

GHG and other emissions

682.2 ktCO2-eq per year (estimated in Jakarta) Additional air pollution from uncontrolled incineration

Migration of leachate into groundwaterWater treatment energy intensity increases (Session 5)

Changes in surrounding flora and fauna

Opportunity for managing waste can also reduce the municipality's net energy consumption.

Where to start? Tools What are the steps

DIGESTION

- For municipal waste with high organic wastes, it could be digested to produce biogas
- Controlled methane generation for gas networks or cogeneration use
- Requires land space

How an anaerobic digester works

Source Anaergia TODAY

Where to start? Tools

INCINERATION

- Recovery of high value energy that can be use for electricity generation and heating if there is high amount of combustibles in the municipal waste (less organic waste)
- Reduces stronger GHG emissions (landfill methane converted to CO2 instead)
- High capital costs

Waste-to-Energy

- 90% reduction of trash volume
- Power generation
- Pollution control

Case Study: Potential of Closed landfill with gas collection (Philippines)

Installation of small engine generator set can allow the landfill to sell electricity with IRR of 1%

However, aim for reduction. Energy recovery allows reduction of existing waste but will not be a long term solution

Key Resources. Waste Management

Waste to Energy technologies https://www.worldenergy.org/wpcontent/uploads/2013/10/WER_2013_7b _Waste_to_Energy.pdf

Solid Waste Management http://www.unep.or.jp/ietc/publications/s pc/solid_waste_management/Vol_I/Binde r1.pdf

4. Other urban services

District Energy Systems

4. District Energy Systems. Case for DES

Where to start?

Fools

Vhat are the steps?

1. Reduction of peak electricity

2. Fuel diversity

- Low value heat could produce heating or cooling
- Could connect with nearby LNG plants for excess cooling

3. Freed up space for buildings

Could be used for stormwater retention

4. District Energy Systems. Case Studies

Where to start? Tools What are the step

- In Paris, district cooling led to:
 - 35% lower electricity consumption
 - 50% reduction in CO2 emissions

 In India, a reduction from 240MW to 135 MW (44% lower) in electricity consumption is expected from the GIFT City

4. District Energy Networks

Where to start? Tools What are the

 In Cyberjaya Malaysia, 8.2 GWh of electricity savings were achieved, and 4100 tonnes of CO2 emissions avoided

4. District Energy Networks

Key Resources. District Energy

https://www.districtenergy.org

http://www.districtenergyinitiative.org/

www.iea.org

IEA #energyefficientworld