

Digitalisation opportunities for energy efficiency

Session 8

Vida Rozite, IEA – Paris, 23 May 2019

IEA #energyefficientworld

IEA 2019. All rights reserved.

Overview of the appliance and equipment training sessions

Tuesday 21 May				
0	Introduction and roundtable	V		
1	Planning energy efficiency programmes	\checkmark		
2	Selecting products for MEPS and Labelling programmes	V		
3	Assessing efficiency performance and setting MEPS	V		
4	Industry transformation	$\mathbf{\overline{A}}$		
5	The relationship between product efficiency and price	V		
Wednesday 22 May				
6	Stakeholder involvement and communication	V		
7	Insights into energy labels	V		
	Site visit	V		
Thursday 23 May				
8	Modernising energy efficiency through digitalisation			
9	Monitoring, verification and enforcement			
10	Monitoring and evaluating policies and programmes			
11	Roundtable discussion, review and report back			

Digital technologies are everywhere....

Drivers of digitalisation: data, analytics, and connectivity

urces: Based on BNEF (2017), Utilities, Smart Thermostats and the Connected Home Opportunity; Holdowsky et al. (2015), Inside the Internet of Things; IEA (2017), Renewables; Tracking Clean Energy Progress; World Energy Investment; Navigant Research (2017), Market data: Demand Response. Global Capacity, Sites, Spending and Revenue Forecasts.

Data collection, storage, and transmission costs have declined by over 90% since 2008

Smart homes, smart buildings, smart factories...

Source: HAND

Irrespective of end-use, smart solutions are powered by data, analytics, control and automation

IEA 2019. All rights reserved.

Smart energy systems

Digitalisation is enabling progress towards energy systems that are bidirectional, responsive and efficient

What are the energy efficiency opportunities of digitalisation?

- Smart homes and buildings could reduce global buildings sector demand by 10% (home level reductions up to 30%, building reductions over 30%)
- Smart factories could reduce onsite energy demand by 20 30%
- Demand response programmes in buildings, industry and transport could provide 185 GW of flexibility, and avoid USD 270 billion of investment in new electricity infrastructure
- Smart grids and smart cities can completely transform how energy is generated and how it is used

• Enhance programme design and implementation

Heat mapping to identify energy efficiency opportunities

LOW HEAT LOSS HIGH HEAT LOSS

From heat mapping to action

Questions? We've got answers

How our technology works

Get in touch

Why is this relevant for appliance and equipment policy makers? 🕡 🖉 🕮

- Standards and labels will improve the efficiency of appliances and equipment but will not make sure they are used efficiently
- Digital solutions can help end users optimise their energy use and cut energy waste
- Smart homes, smart buildings, smart factories, smart energy systems, smart cities are enabled by smart appliances and equipment
- Energy efficiency policy makers can take a proactive role in stimulating the development of and the market for smart efficient products
- Energy efficiency policy makers can enable demand response by requirements for appliances and equipment

Accelerating smart energy efficiency

Policies are needed to accelerate uptake of smart solutions for energy efficiency

Smart homes

Source: Centrica

Opportunities in residential buildings

Technologies	Benefit	Savings range
Smart thermostats	Heating and cooling can be controlled remotely	5-20% of heating/cooling energy use
Smart zoning	Allows individual rooms or zones to be heated/cooled to specific temperatures at specific times	10% of heating/cooling energy use
Smart lighting	Adjusts in accordance to occupancy and/or light levels	1-10% of whole home energy use
Smart window control	Controls the amount of light and can block heat or cold	10-20% heating/cooling energy use + lighting energy use savings
Home energy monitoring system	Provides users with information about how energy is used and provides recommendations or prompts	4-7 of whole home energy use
Smart HEMS (Home energy management system)	Provides ability to control energy use (incl. remotely) and can optimise energy use on basis of behaviour	8-20% of whole home energy use
Smart home	Combination of smart home technologies that provide measurement, monitoring, displays, management, control automation, zoning etc.	Up to 30% of whole home energy use

Opportunities in commercial and public buildings

Technologies	Benefit	Savings range
Smart plugs	Reduces power to appliances when not required for use	25- 60% of plug load use
Smart lighting	Adjusts in accordance to occupancy and/or light levels	Up to 45% of lighting energy use
Occupancy based wireless thermostats	Adjusts heating or cooling in accordance to occupancy	5-10%
Smart shading or smart windows	Reduces heat, glare, enables more optimal use of lighting	19-26% on cooling 48-67% on lighting
HVAC control	Adjusts in accordance to temperature (and occupancy)	24-32% of HVAC
Smart BEMS (Building energy management system)	Collects data on end-uses, provides information for building manager and enables automation	13-66% (whole building) average 23%

Opportunities in industry

Technologies	Benefit	Savings range
Smart auxiliary processes (lighting, heating, cooling, ventilation)	Control in accordance to needs, occupancy, other relevant parameters	Up to 10% of total energy use
Smart motors	Data-driven control, load sensing, application optimisation	Up to 50% of motor system energy use
Smart process control	Data, control, optimisation, automation	Around 20% energy demand of process
Smart Energy Management System	Collects data on end-uses, provides information for manager and enables optimisation and automation	Up to 30% of total energy use

Note: significant variations in achievable savings depending on size and sector

How does smart energy management work?

Aligning energy use to actual needs

Example: Indian company Smart Joules

- Raise awareness
- Capacity building (retailers, technicians, installers, energy service companies)
- Promote international standardisation and interoperability
- Lead by example (e.g. smart & energy efficient public buildings)
- Make sure that energy efficiency is a priority in "smart projects" e.g. smart cities
- Provide incentives for energy management
- Require energy management (via e.g. building codes)

Enabling demand response and smart energy systems

Policies are needed to make sure that consumers, appliances and equipment can participate in demand response and smart energy systems

Digital solutions enable us to understand demand

Source: Newborough and Augood (1999), "Demand-side management opportunities for the UK domestic sector" (reproduced courtesy of the Institution of Engineering and Technology). IEA 2019. All rights reserved.

Aggregating data into demand curves

Source: DSLDC

Tackling peak demand

What is demand response?

Source: ARENA

Peak Clipping Load Shifting

Source: Stanford University

Example: PeakSmart

- Connect energy efficiency with demand response
- Awareness raising
- Promote standardisation and interoperability
- Promote capability and use labels
- Include smart capabilities and controllability in specifications or requirements,
- Offer subsidies, rebates or other incentives
- Incentives and technical assistance for consumers investing in energy management controls that also enable demand response

Digital solutions also use energy

Policies are needed to ensure that they are as efficient as possible

Energy use by digital technologies - overview

A greater share of appliance electricity use is network-enabled

The growth in network-enabled devices presents opportunities for smart demand response but also increases needs for standby power

Connected devices come with a hidden energy price tag

Average standby power of household connected devices per unit

Networked standby, the energy used to maintain the device's connection to the wider network, is also often a connected device's biggest draw on power.

iea

• Regulations:

- European Union Ecodesign network standby
- Korea e-standby program
- Voluntary approaches
 - US and Canada voluntary agreements
 - EU Codes of Conduct
 - CDA Voluntary Principles for Energy Efficient Connected Devices
- Research and development
 - Super efficient devices
 - Energy harvesting
- Awards
 - Super Efficient Appliance Deployment Initiative Connected Efficiency Award

Annual energy saved by US voluntary set top box agreement

Resources

iea

IEA resources https://www.iea.org/digital/

IEA Technology Collaboration Platforms https://www.iea.org/tcp/

IEA Technology Collaboration Platform Electronic Devices & Networks <u>https://edna.iea-4e.org/about</u>

Connected Device Alliance https://cda.iea-4e.org/

The International Energy Agency complete that in 2013 around 14 billion devices were network connected. That number could skyrocket to 100 billion by 2030, driving dramatic increases in both energy demand and wasted energy.

IEA 2019. All rights reserved.

- Appliance Energy Calculator App
- PocketWatt tool

>> IEA #energyefficientworld