
An introduction to decomposition analysis

Mafalda Silva and Charles Michaelis Paris, 23 May 2019

IEA #energyefficientworld

IEA 2019. All rights reserved.

How to estimate energy savings from efficiency over time?

Source: adapted from IEA (2018) *Energy efficiency 2018,* based on the IEA Energy efficiency indicators database, 2018.

Estimated energy savings since 2000 in IEA reached approximately 21EJ, equivalent to energy consumption of Germany, France and UK together.

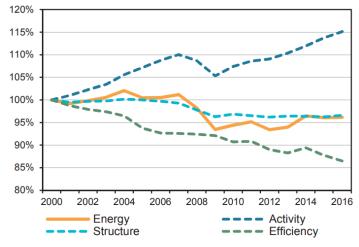
IEA 2019. All rights reserved.

iea

- Activity effect

- Change in the **overall level** of the activity / level of action that drives energy consumption.

- Structure effect (Activity mix)


- Change in the **mix of activities** within a sector

- Energy efficiency effect (Intensity)

- Changes in **sub-sectoral energy intensities** (i.e. energy used per unit of activity)

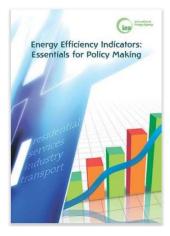
Purpose of decomposition analysis:

Quantify **contribution of specific factors** to the change in energy consumption between a base year and another point in time

Source: IEA Energy Efficiency Indicators database (2018 edition)

Need to disentangle different factors: activity, structure and efficiency

iea

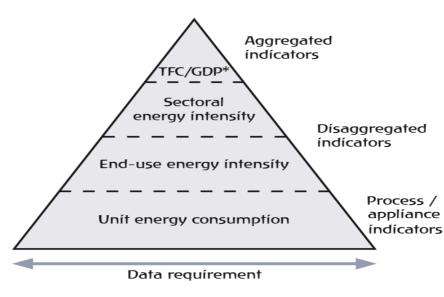


• There are different methods – the IEA uses the LMDI

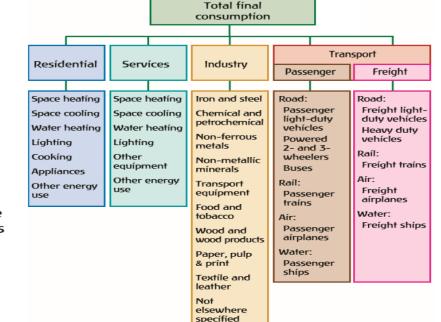
LMDI = Logarithmic Mean Divisia Index

 Can be applied to <u>specific subsectors</u> or <u>end uses</u> (e.g. space cooling, cars,...) to estimate the energy savings from efficiency.

- For more detail: Energy efficiency indicators: Essentials for policy makers:
 - to provide guidance to develop and interpret energy efficiency indicators
 - https://goo.gl/agcNg2

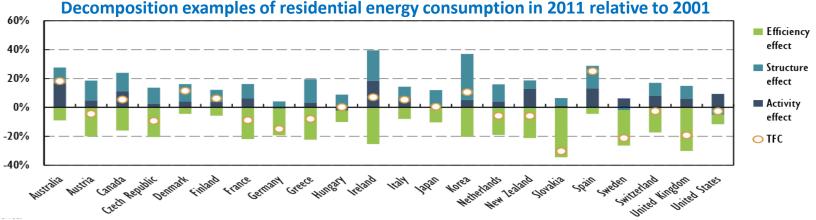

Data requirements and indicators for decomposition analysis

EEI data requirements


iea

- Degree of disaggregation of EEI needed affects the data collection requirements
- Sub-sectoral /end-use energy consumption

Schematic representation of energy indicators



Schematic disaggregation of sectoral end-uses

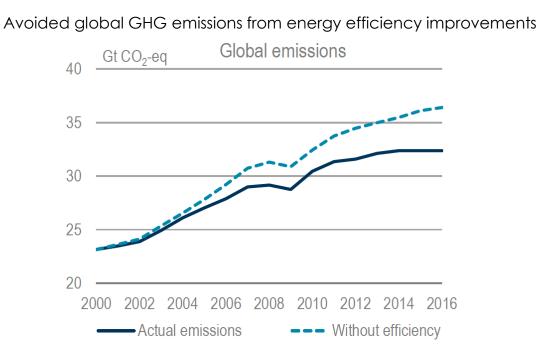
Metric examples for residential energy decomposition

End-use	Activity (A)	Structure (S)	Intensity (I)
Space heating	Population	Floor-area / Person	Space heating energy* / Floor-area
Space cooling	Population	Floor-area / Person	Space cooling energy** / Floor-area
Water heating	Population	Occupied-dwelling / Person	Water heating energy / Occupied-dwelling
Cooking	Population	Occupied-dwelling / Person	Cooking energy / Occupied-dwelling
Lighting	Population	Floor-area / Person	Lighting energy / Floor-area
Appliances	Population	Appliance stocks / Person	Appliance energy / Appliance stocks

Decomposition examples of residential energy consumption in 2011 relative to 2001

IEA 2019. All rights reserved

• Metric examples for industry energy decomposition


Sub-sector	Activity (A)	Structure (S)	Intensity (I)
Food products, beverages, tobacco products (ISIC* 10-12)	Value-added	Share of Value-added	Energy / Value-added
Paper and paper products (ISIC 17)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Chemicals and chemical products (ISIC 20-21)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Non-metallic mineral products (ISIC 23)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Basic metal (ISIC 24)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Fabricated metal products, machinery and equipment (ISIC 25-28)	Value-added	Share of Value-added	Energy / Value-added
Other industry (ISIC 10-32, excluding ISIC 19 and those described above)	Value-added	Share of Value-added	Energy / Value-added

• Metrics examples for transport energy decomposition

Mode	Activity (A)	Structure (S)	Intensity (I)
Passenger road (cars, buses)	Passenger-km	Share of Passenger-km,	Energy / Passenger-km,
rassenger toad (cars, buses)		Registered Vehicle / Passenger-km	Energy / Vehicle
December will	Dessen een luus	Share of Passenger-km,	Energy / Passenger-km,
Passenger rail	Passenger-km	Passenger / Passenger-km	Energy / Passenger
Dessen de montie din	Passenger-km	Share of Passenger-km,	Energy / Passenger-km,
Passenger domestic air		Passenger / Passenger-km	Energy / Passenger
	T	Share of Tonne-km,	Energy / Tonne-km,
Freight road (HDVs)	Tonne-km	Tonne / Tonne-km	Energy / Tonne
F or (all the set)	Tonne-km	Share of Tonne-km,	Energy / Tonne-km,
Freight rail		Tonne / Tonne-km	Energy / Tonne
Fusiaba da mantia abia sin s	Tonne-km	Share of Tonne-km,	Energy / Tonne-km,
Freight domestic shipping		Tonne / Tonne-km	Energy / Tonne

Energy efficiency & emissions savings

Source: IEA (2017), Energy Efficiency Market Report, OECD/IEA, Paris.

Energy efficiency reduced GHG emissions by 4 GtCO₂-eq, or 13% of total CO2 emissions in 2016.

IEA 2019. All rights reserved.

✓ IEA #energyefficientworld