

6. Utilities: Lighting and other urban services

Mel Slade Paris, 22 May 2019

6. Utilities: Lighting and other urban services

6. Utilities: Lighting and other urban services

Trainer(s): Mel Slade

Scenario: Local residents are complaining about dark and unsafe streets

Question: What can you do to reduce energy use in public lighting and improve service delivery?

6. Utilities: Lighting and other urban services

1. Energy use in Lighting

Energy use and impacts,

5 mins

2. Strategies for energy efficiency

Lighting service, technology replacement, management systems

15 mins

3. Activity

20 mins

4. Other Urban Services

- Waste management: waste generation, impacts, energy recovery opportunity, technologies, and policies
- District energy systems: district energy concept; waste heat integration and sector coupling

20 mins

1. Energy use in lighting

1. Energy use in lighting. Energy use and impacts

Where to start? Tools What are the steps

From a national point of view, costs of public lighting are small. However it is a big strain on local budgets.

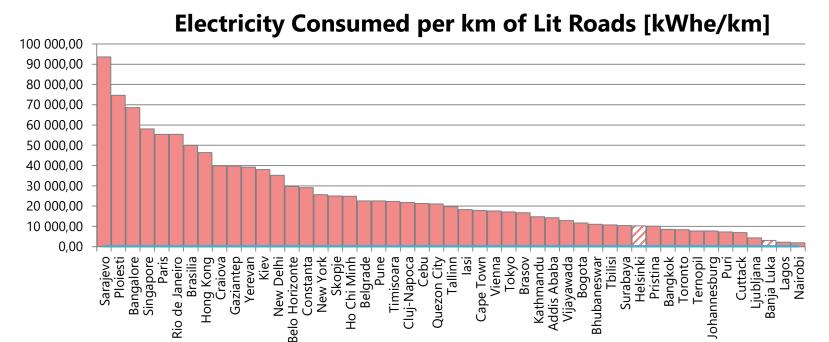
iea

Where to start? Tools

What are the steps?

Road safety: 30% reduction in collision, 43% reduction in night time accidents

Lower crime: 7% reduction in New York, 39% reduction in UK



Inability to sustain optimum lighting service affects important social service provided by public lighting. Expanding these are the common goals of a growing municipality

Where to start? Tools What are the ste

Where to start? I ools What are the steps

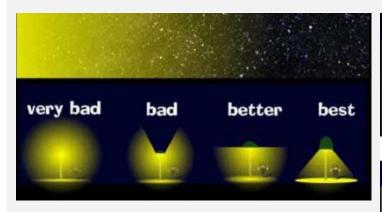
Manage systems better

Replace technology

Install smarter systems

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Replace lamps with more efficient technologies Install smarter lighting management systems

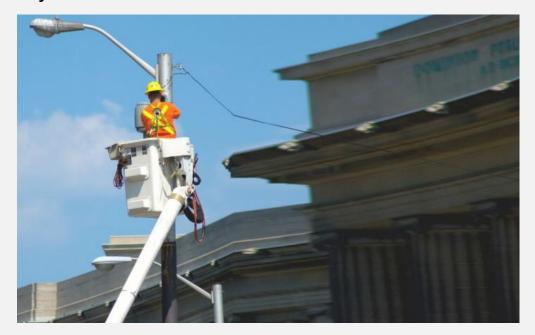


Where to start? Tools What are the step

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Saving energy can already be done with same technologies, using only better design



Where to start? What are the step

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Proper maintenance reduce excess electricity use caused by faulty fixtures

Where to start? Tools What are the step

Replace technology

 Replace lamps with more efficient technologies • LED lamps significantly more efficient than other street lighting technology

Where to start? What are the step

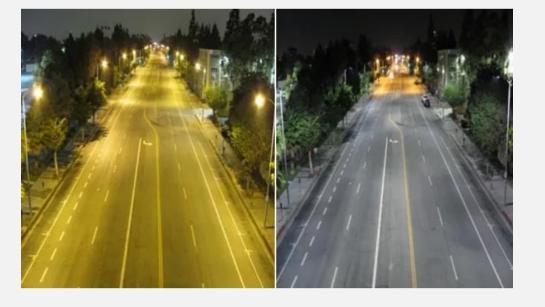
Replace technology

 Replace lamps with more efficient technologies Case Study: Ann Arbor, USA pilot project spent 472\$ additional cost per fixture but pays back in 4.7 years, resulting to 97% positive response

80%

Energy use reduction

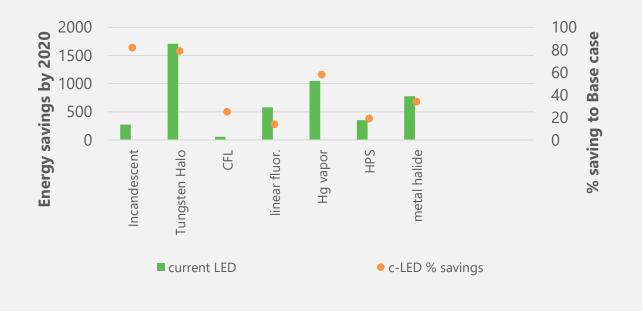
100\$
Saving per
fixture


2200 tons Avoided CO2 emissions

Where to start? Tools What are the step

Replace technology

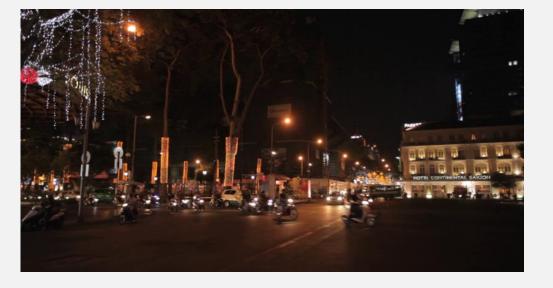
 Replace lamps with more efficient technologies • Case Study: Before and after illustration of street lighting retrofit in Los Angeles, CA that saw the installation of over 140,000 LEDs



Where to start? Tools What are the step

Replace technology

 Replace lamps with more efficient technologies • **Case Study:** Potential in India to save on street lighting by 2020 using the current generation LED lamps in replacing the existing lamp technologies.



Where to start? What are the step

Install smarter systems

 Install smarter lighting management systems Case Study: Ho Chi Minh and Quy Nhon City, Vietnam. Dimming system (bipower ballasts) in 30000 streetlights during low traffic, cutting energy consumption by 40%

Where to start? | Vools | What are the steps:

1. Assess system and set goals

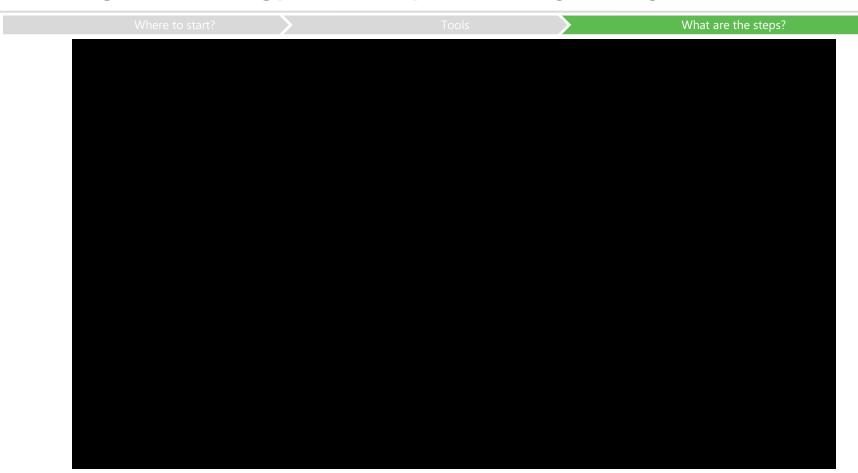
(Part 1 – Energy use in lighting)

3. Deliver

(Part 2 – Strategies)

4. Monitor and Evaluate

(later in Session 9)


2. Strategies for energy efficiency. Delivering change

What are the steps? **DELIVERY MODEL EXAMPLES** 3. Deliver SITUATION ACTION • QUEZON CITY, Does the **PHILIPPINES** Allocate funds by • ONTARIO, CANADA municipality have Municipal establishing sufficient resources **Financing** (CITIES OPTING budget line item to fund the Model FOR THE DESIGNfor project program itself? **UPGRADE-**TRANSFER MODEL) • AEL. INDIA • EESL IN VIZAG, Negotiate an Are there ESCOs Private ESCO INDIA energy service active or planning Model • ONTARIO, CANADA performance to be active in **Public ESCO** (CITIES OPTING contract with the local market? Model FOR SHARED **ESCOs SAVINGS EPC** MODEL) Determine Are leasing or eligibility criteria PPP Model • GUADALAJARA, private financing and negotiate MEXICO Lease to Own programs financing Model • BIRMINGHAM, UK available? agreements

2. Strategies for energy efficiency. Delivering change

What are the steps?

Type of Risk	Risk Manifestiation	Risk mitigation measures
Technical risk	Failure of luminaries	?
Performance risk	Failure of installed lighting system	?
Financial risk	Failure to make payments	?

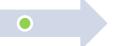
Source https://www.esmap.org/node/57252 IEA 2019. All rights reserved.

Where to start? Tools What are the steps?

3. Deliver

ACTIVITY

Take 15-20 minutes to discuss possible risk mitigation methods in delivering energy efficient public lighting


IEA 2019. All rights reserved.

Source https://www.esmap.org/node/57252

What are the steps?

3. Deliver

	Type of Risk	Risk Manifestation	Risk Mitigation Measure	Example
	Technical Risk	Failure of LED luminaires	Obtain product warranty from LED luminaire manufacturer	Ontario, Canada
			 Extensively test luminaires with external technical assistance 	Quezon City, Philippines
			Obtain third-party certification of luminaires	Guadalajara, Mexico
	Performance Risk	Failure of installed LED system	 Conduct extensive pilots Outsource risk to private sector by procuring "lighting service" with performance penalties in PPP contract Outsource risk to private sector contractors by using EPC contracts Conduct own maintenance Extensively search and procurement of a trusted operator 	Quezon City, Philippines Birmingham, United Kingdom EESL in Vizag, India Guadalajara, Mexico Ontario, Canada
	Financial Risk	Failure to make payments	 Secure state government guarantees Secure commercial bank guarantees Work with private sector with substantial resources 	Guadalajara, Mexico AEL, India Birmingham, United Kingdom

IEA 2019. All rights reserved. Source https://www.esmap.org/node/57252

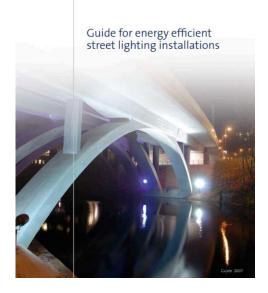
Key Resources. Lighting

Tracking Clean Energy Progress https://www.iea.org/tcep/buildings/lighting/

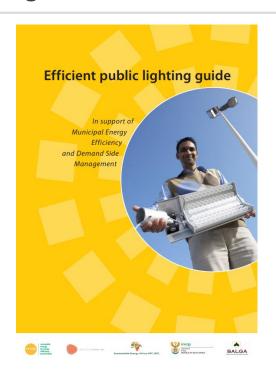
SEAD Street lighting tool https://superefficient.org/tools/street-lighting-tool

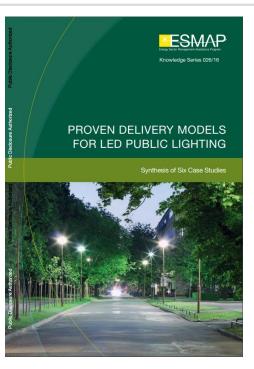
United 4 Efficiency https://united4efficiency.org/products/lighting/

IEA's Technology Collaboration Platforms https://ssl.iea-4e.org/



lites.asia (last update 2017) http://www.lites.asia/

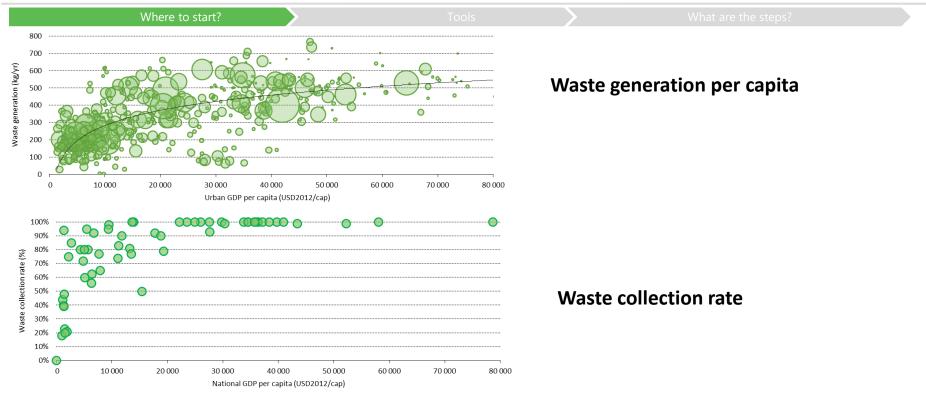

Key Resources. Lighting



Guide for energy efficient street lighting installations https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/estreet_e_street_guide_en.pdf

Efficient public lighting guide (South Africa) http://www.cityenergy.org.za/uploads/resource_1 7.pdf

Proven Delivery Models for LED Public Lighting https://www.esmap.org/node/57252



4. Other urban services

Waste Management

4. Waste Management. Trends

Solid waste generation is often driven by purchasing power. Their subsequent collection would be crucial in the energy recovery.

4. Waste Management. Impacts

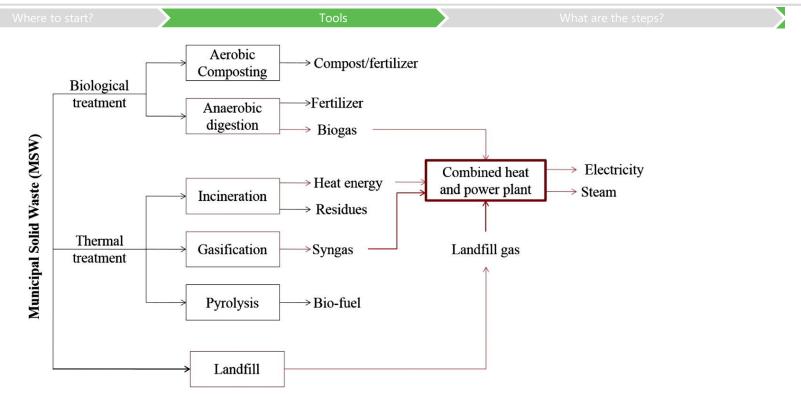
Where to start?

ools

Vhat are the steps?

Bantar Gebang Landfill, Indonesia https://www.dailymail.co.uk/travel/travel_news/article-4455690/Images-reveal-life-inside-Indonesian-rubbish-dump.html

GHG and other emissions


682.2 ktCO2-eq per year (estimated in Jakarta) Additional air pollution from uncontrolled incineration

Migration of leachate into groundwaterWater treatment energy intensity increases (Session 5)

Changes in surrounding flora and fauna

Unmanaged solid waste can result to multiple knock on effects that increase social problems for the local authority

Opportunity for managing waste can also reduce the municipality's net energy consumption.

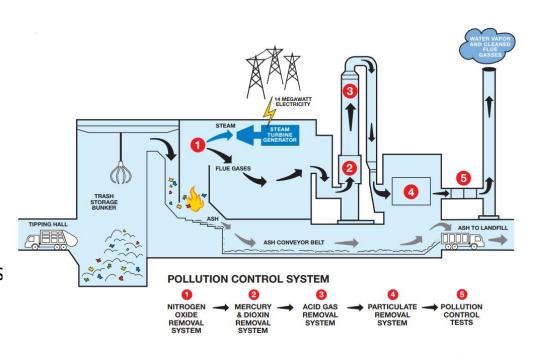


Where to start? Tools What are the step

DIGESTION

- For municipal waste with high organic wastes, it could be digested to produce biogas
- Controlled methane generation for gas networks or cogeneration use
- Requires land space

How an anaerobic digester works

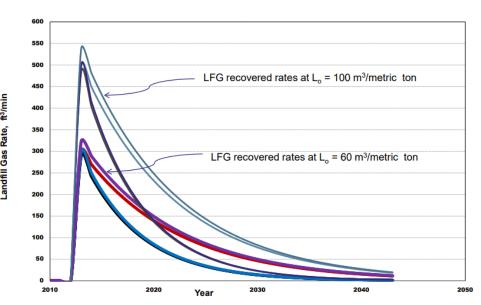

Source-Anaergia TODAY

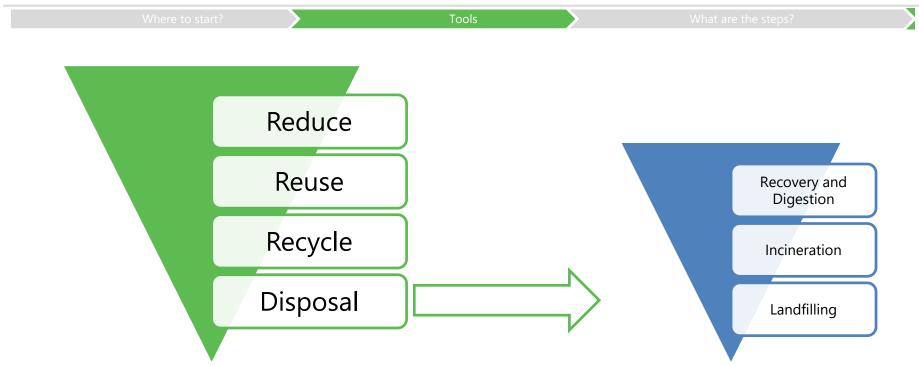
Where to start? Tools What are the ste

INCINERATION

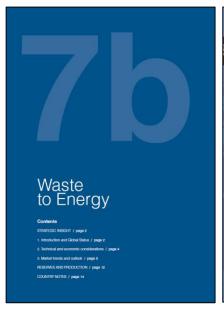
- Recovery of high value energy that can be use for electricity generation and heating if there is high amount of combustibles in the municipal waste (less organic waste)
- Reduces stronger GHG emissions (landfill methane converted to CO2 instead)
- High capital costs

Waste-to-Energy


- 90% reduction of trash volume
- Power generation
- Pollution control


Case Study: Potential of Closed landfill with gas collection (Philippines)

Installation of small engine generator set can allow the landfill to sell electricity with IRR of 1%



However, aim for reduction. Energy recovery allows reduction of existing waste but will not be a long term solution

Key Resources. Waste Management

Waste to Energy technologies https://www.worldenergy.org/wpcontent/uploads/2013/10/WER_2013_7b _Waste_to_Energy.pdf

Solid Waste Management http://www.unep.or.jp/ietc/publications/s pc/solid_waste_management/Vol_I/Binde r1.pdf

4. Other urban services

District Energy Systems

4. District Energy Systems. Case for DES

Where to start?

[ools

Vhat are the steps?

1. Reduction of peak electricity

2. Fuel diversity

- Low value heat could produce heating or cooling
- Could connect with nearby LNG plants for excess cooling

3. Freed up space for buildings

Could be used for stormwater retention

36

4. District Energy Systems. Case Studies

Where to start?

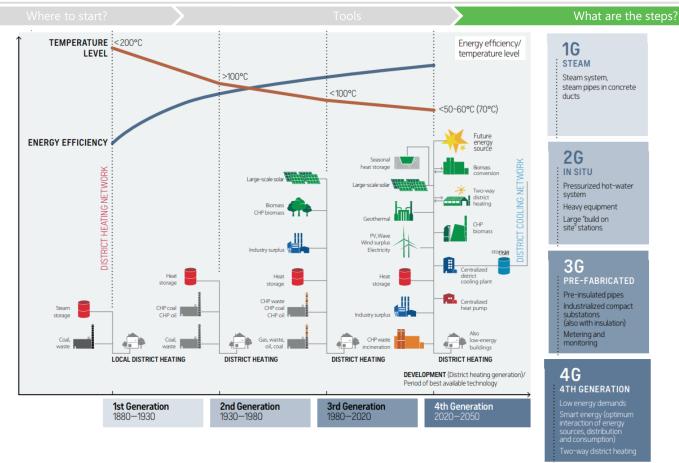
ools

hat are the steps?

- In Paris, district cooling led to:
 - **35% lower electricity** consumption
 - 50% reduction in CO2 emissions

 In India, a reduction from 240MW to 135 MW (44% lower) in electricity consumption is expected from the GIFT City

4. District Energy Networks


Where to start? Tools What are the step

 In Cyberjaya Malaysia, 8.2 GWh of electricity savings were achieved, and 4100 tonnes of CO2 emissions avoided

4. District Energy Networks

Key Resources. District Energy

https://www.districtenergy.org

http://www.districtenergyinitiative.org/

