

## What are the steps? Building energy codes and standards

Buildings: Session 6

Buildings energy efficiency sessions in partnership with:





INDO-SWISS BUILDING ENERGY EFFICIENCY PROJECT

### Energy Efficiency Training Week: Buildings Program



- 1. Where to start: Understanding energy use in buildings
- 2. Where to start: Energy efficiency potential in buildings
- 3. Toolkit: Energy efficient building design
- Toolkit: Energy efficient building technologies
   Where do I get help? IEA's Technology Collaboration Programmes
- 5. Toolkit: Enabling investment with energy efficiency policies
- 6. What are the steps : Building energy codes and standardsSite Visit: Schneider Electric
- 7. What are the steps: Set targets and develop policies
- 8. Did it work: Evaluating the multiple benefits of energy efficiency
- Did it work: Tracking progress with energy efficiency indicators
   Where do I get help? International and regional energy efficiency initiatives
- 10. Energy Efficiency Quiz: Understanding energy efficiency in buildings



6. What are the steps: Building energy codes and standards

Trainers: Brian Dean and Pierre Jaboyedoff

Session: 1 hour

**Purpose:** To teach the fundamentals of building energy codes and standards. This course will include discussions of regulation types (e.g. mandatory, voluntary and stretch codes) and compliance paths (e.g. prescriptive, performance and outcome-based).

**Scenario:** A respected industry association claims that the building energy codes out of date. *How do you go about testing this claim, and what do you do if this information is correct?* 



# Building energy code types

Prescriptive

Simple trade-off

Performance

Outcome-based





## **1. Prescriptive Codes:**

- Specify requirements for key elements such as wall and ceiling insulation, window and doors, roofs, foundations, heating, ventilation air-conditioning, equipment efficiency, water heating, lighting fixtures, and controls.
- Compliance with these codes is commonly assessed by checking project designs and specifications against the list of prescribed requirements.

## 2. Simple Trade-Off Codes:

 Typically allow for trade-offs between similar building components. For example, less efficient insulation for more efficient windows in the building envelope.



## **3. Performance Codes:**

- Specify a minimum required level of energy consumption or intensity for the whole building. They require energy modelling to be conducted at design stage.
- Compliance is commonly checked by comparing the modelled energy performance of the design with a reference building of the same type.

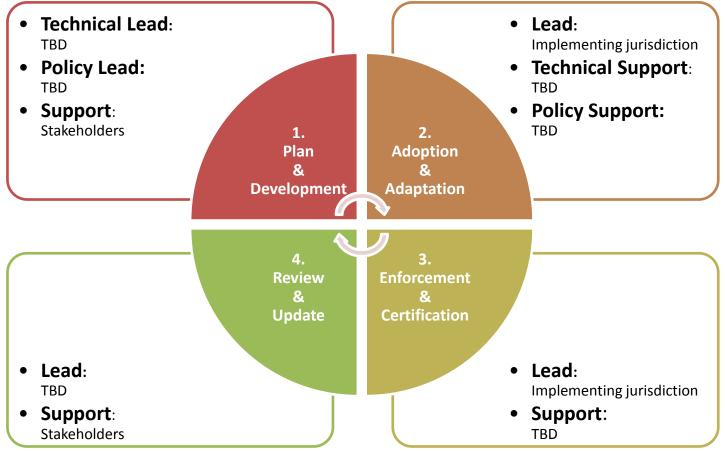
## 4. Outcome-based Codes:

- Requires demonstration of buildings achieving code required performance in operation.
- Compliance is typically possible through energy performance certificates or with energy disclosure policies.



# Building energy code process

4 part governance


Roadmaps and pathways

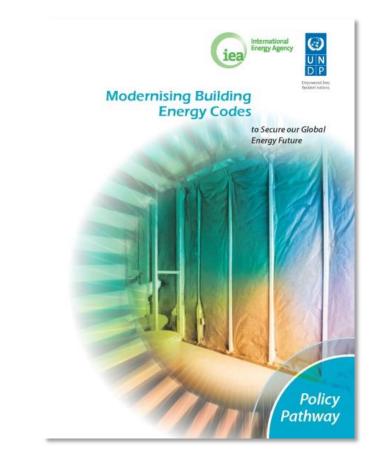


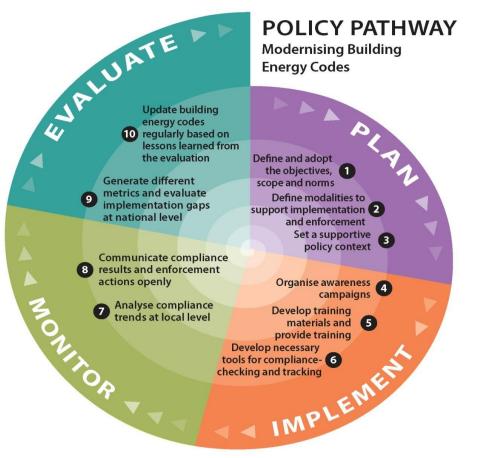
### Building energy codes: 4-part governance



**Technical Lead**: **DEVELOP & IMPROVE** TBD **Policy Lead:** • TBD Support: • Stakeholders SESS, Lead: • AS TBD




#### Building energy codes: 4-part governance roadmap




|                   | 2017 2020                                                                                                |                                                                                                  | 2030                                                                                                                                                                                                                                    | 2050 |
|-------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                   | Short-term Med                                                                                           | ium-term                                                                                         | Long-term                                                                                                                                                                                                                               |      |
| Capacity Building | labolling buildings and                                                                                  | Program to train cities and build<br>energy codes, energy labelling a<br>zero emission buildings | ders on building<br>and to pilot net Program to train cities and builders on net zero emisssion buildings                                                                                                                               |      |
| Development       | National model<br>model code                                                                             | 10% saving model<br>code & 20%<br>savings stretch                                                | 20% saving<br>model code &<br>40% stretch30% saving<br>model code &<br>60% stretch40% saving<br>model code &<br>80% stretch50% saving<br>model code &<br>model code &<br>NZEB stretch                                                   |      |
| Adoption          |                                                                                                          | Model code adoption: 100<br>Stretch code adoption: 20                                            | Model code adoption: 200<br>Stretch code adoption: 40 Adoption of building energy codes by 100% of local jurisdictions.                                                                                                                 |      |
| Enforcement       | >50% verification and<br>certification of compliance<br>with adopted building energy<br>code             | >75% verification and certification                                                              | >95% verification and certification and certification                                                                                                                                                                                   |      |
| Review & Update   | Evaluation of code adoption<br>and enforcement of model and<br>stretch codes with<br>recommended updates | Evaluation of code<br>adoption and enforcement<br>with recommended<br>updates                    | Evaluation of code<br>adoption and enforcement<br>with recommended<br>updatesEvaluation of code<br>adoption and enforcement<br>with recommended<br>updatesEvaluation of code<br>adoption and enforcement<br>with recommended<br>updates | t    |

#### Building energy codes: policy pathway







www.iea.org/publications/policypathwaysseries/

### Building energy codes: policy pathway

iea

Items to consider in the plan and development stages:

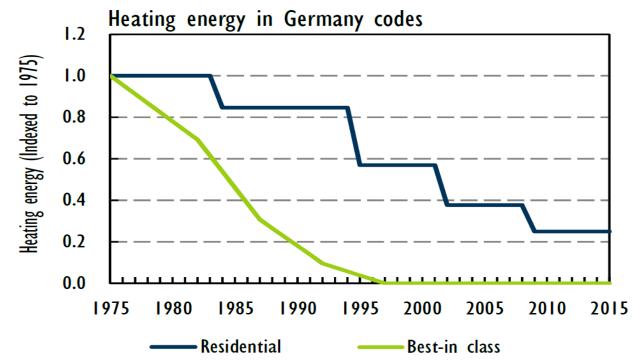
|                      | Energy sufficiency                                                                  | Energy efficiency                                                                                                                        | <b>B</b> Renewable energy                                                                                                |
|----------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Energy<br>strategy   | Reduce energy needs                                                                 | Reduce energy consumption                                                                                                                | Reduce CO <sub>2</sub> emissions<br>by using renewable energy                                                            |
| Policy<br>instrument | <ul> <li>Land-use policies</li> <li>Building energy codes</li> </ul>                | <ul> <li>Building energy codes</li> <li>S&amp;L policies</li> </ul>                                                                      | <ul> <li>Land-use policies</li> <li>Building energy codes</li> <li>S&amp;L policies for equipment</li> </ul>             |
| Policy<br>measure    | <ul> <li>Bioclimatic design principles</li> <li>Use of passive solutions</li> </ul> | <ul> <li>Mandatory S&amp;L for:</li> <li>overall building energy<br/>performance</li> <li>building elements<br/>and equipment</li> </ul> | <ul> <li>Mandatory share of supply<br/>from renewable energy sources</li> <li>Mandatory S&amp;L for equipment</li> </ul> |

### Building energy codes: policy pathway



#### Items to consider in the implementation stages:

| Before issuing construction permit:                                                                                                                                                                                                                             |                                                      |                                                               | At the construction stage:                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>review plans;</li> <li>review test reports of construction materials;</li> <li>review calculation assumptions;</li> <li>review thermal calculation results.</li> </ul>                                                                                 | Check<br>compliance at<br>the design stage           | Check<br>compliance at<br>the construction stage              | <ul> <li>at least one to two random on-site checks;</li> <li>review list of materials substituted in the field;</li> <li>review test reports indicating<br/>the approval of the changes;</li> <li>ensure insulation is well installed.</li> </ul> |
| When the building is occupied:                                                                                                                                                                                                                                  |                                                      | )                                                             | Before issuing occupancy permit:                                                                                                                                                                                                                  |
| <ul> <li>meter energy consumption at least during the first two years of occupancy;</li> <li>adjust heating, cooling, ventilation and lighting systems;</li> <li>implement energy managment system;</li> <li>work with end-users on their behaviour.</li> </ul> | Check compliance<br>when the building<br>is occupied | Check compliance<br>prior to the occupancy<br>of the building | <ul> <li>conduct blower-door test;</li> <li>fix the leaks;</li> <li>check each building system;</li> <li>conduct comprehensive commissioning.</li> </ul>                                                                                          |

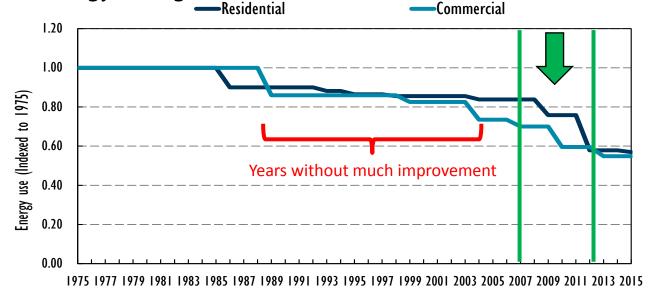

#### www.iea.org/publications/policypathwaysseries/



## Building energy codes: Germany

iea

Germany has used increasing **regulation** and increasing **technology R&D** to achieve a 75% reduction in heating energy use from 1975-2015






## Building energy codes: United States

### United States: Target setting for building energy codes

- In 2007, US Congress directed US DOE to support efforts to reduce energy use in new buildings by at least 30% by 2010.
- In October 2010, final voting confirmed code improvements that resulted in 32% energy savings.



2007 Target: **resulted in 32% improvement.** More energy savings than any period since 1975. iea

- National body accountable to Congress:
  - US Department of Energy
- Non-government bodies that develop "model" codes:
  - International Code Council
  - ASHRAE
- Jurisdictions that adopt codes:
  - States
  - Cities/towns
- Stakeholders that influence the development and adoption of codes:
  - Manufacturers, code officials, builders, developers, lobbyists, consultants, etc.

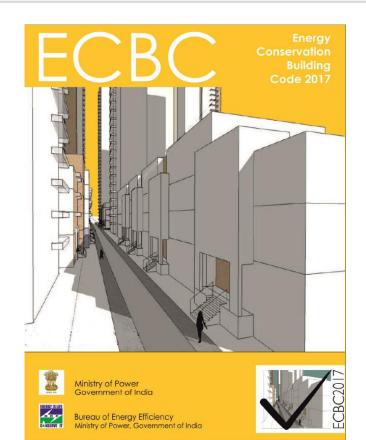
iea

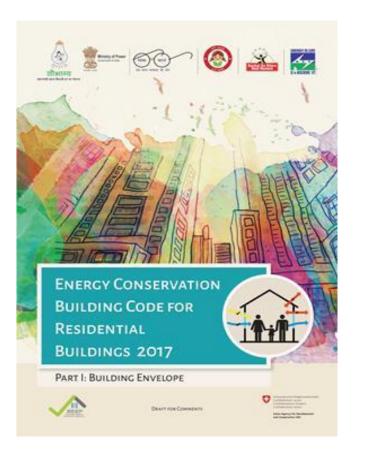
- iea
- American Recovery and Reinvestment Act of 2009 Section 410 linked \$3.1 billion in state energy program funding to the adoption of and compliance with the latest residential and commercial codes. Section 410 required states to:
  - implement codes that met or exceeded the 2009 International Energy Conservation Code and the 2007 ASHRAE 90.1 standard
  - achieve compliance in at least 90 percent of new and renovated buildings
- "Home rule" states (like Arizona and Colorado) do not have a state code, but major cities are responsible for adopting and enforcing building energy codes



- **Stretch code:** a code that has higher energy efficiency requirements than the base model code.
  - To allow local jurisdictions to adoption higher energy efficiency requirements
  - To enable incentive programs tied to higher efficiency levels

#### Massachusetts stretch code

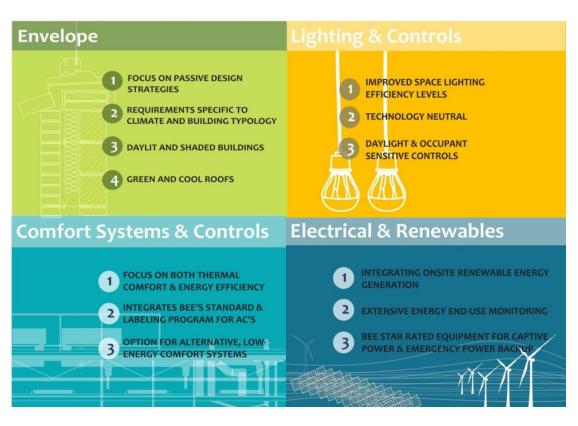

- First stretch code in the US
- Originally 20 percent energy savings beyond the 2009 IECC
- Updated to be more efficient than the 2015 IECC / 2013 ASHRAE
- Jurisdictions covering 66% of the population have adopted the stretch code
- California, Oregon and Vermont have also started using stretch codes




## Building energy codes: India's Energy Conservation Building Code

### India's Energy Conservation Building Code 2017 & Draft Residential








### India's Energy Conservation Building Code 2017: Objective

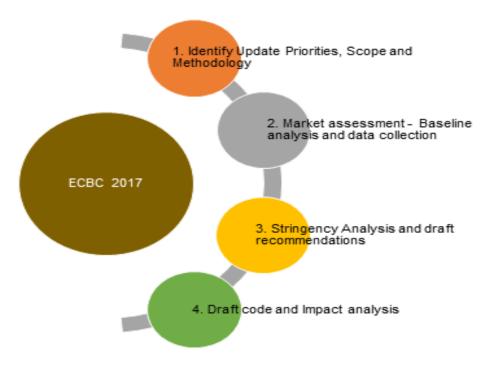


- Systematic implementation and enforcement
- Strong push towards energy efficiency
- Net Zero Energy Building Vision by matching both energy efficiency and renewable energy
- Response to recent technological advancements
- Applicable to various categories of buildings and passive design strategies
- Technology neutral

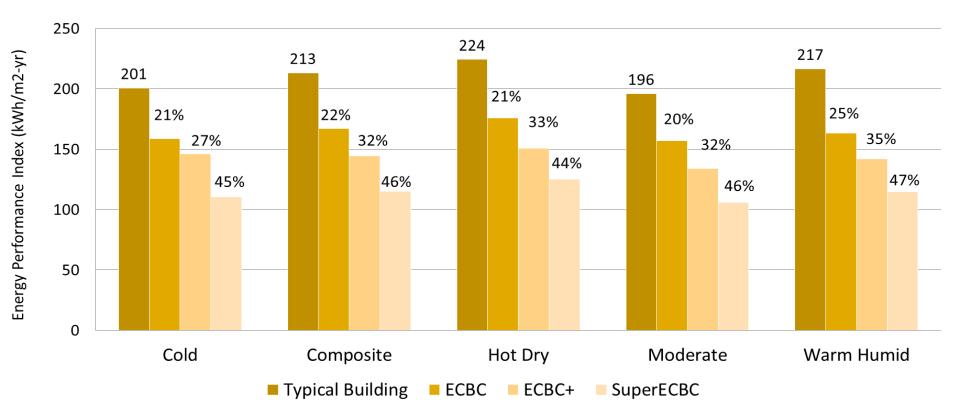




#### • Working Groups:


- Market Assessment
- Technical Analysis
- International Best Practice
- Expert Comments

#### Technical Committee:


- Regional and National Workshops
- Public Consultation

#### • Steering Committee:

- Overall Review and Guidance



#### India's Energy Conservation Building Code 2017: Estimated impact



iea



### **Process for developing new code:**

- Review experience in South East Asia
  - Singapore
  - Hong Kong
  - Others ...

#### Methodology

- Defining representative multi-storey buildings
- Survey of more than 60 on-going large residential projects
- Research of typical Window to Wall Ratio for the selected building types
- Defining user patterns and internal heat gains
- Performing systematic simulations with Energy Plus (> 20'000) for different climates

#### • Using regional experiences

- Developing Residential Envelope Transmittance Value (RETV) for representative buildings



#### **Developing simple equation for simple trade-off for envelope :**

- Envelope heat gain per envelope area obtained by simulation for the main variables
  - Calculated as average for the cooling period, excluding roof
  - Net heat gain rate of building envelope components divided by total exposed envelope area

Envelope heat gain, 
$$\frac{W}{m^2} = \frac{Q_{wall.cond} (kWh) + Q_{win.cond} (kWh) + Q_{win.rad} (kWh)}{T_{cooling} (h) * A_{envelope} (m^2)}$$

• Residential Envelope Transmittance Value (RETV)

$$RETV = A * (1 - WWR) * U_{opaque} * \omega + B * WWR * U_{non-opaque} * \omega$$
$$+ C * WWR * SHGC_{eq} * \omega$$

- WWR: Window to Wall Ratio SHGCeq: So
- *Uopaque*: thermal transmittance (W/m<sup>2</sup>-K)
- Unon-opaque: thermal transmittance (W/m<sup>2</sup>-K)

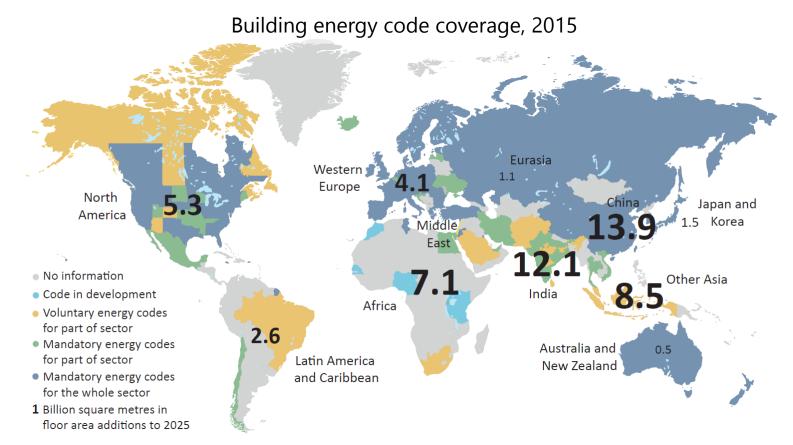
- *SHGCeq*: Solar heat gain coefficient
- A,B & C: given coefficients for each climate zone
- $\omega$ : orientation factor



# Building energy code progress

Policy coverage

Energy savings


Resources



#### Building energy code coverage



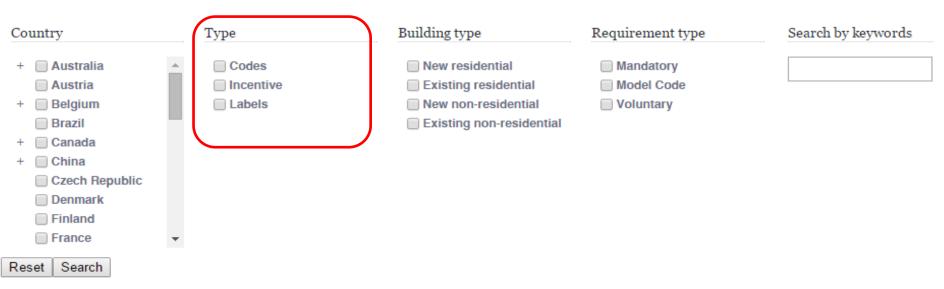
© OECD/IEA 2018



This map is without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boudaries, and to the name of any territory, city or area. Source: IEA Energy Technology Perspective 2017



# Building energy code resources


Online database BEEP



### Online: Building energy efficiency policies database



#### Search policies



#### BEEP and other IEA databases are being integrated into IEA''s Global Exchange Platform

### Online resource: Building energy efficiency policies database



#### Policies

#### Codes

| Alberta Building Code 2011                           | New residential                                                                          | Alberta |
|------------------------------------------------------|------------------------------------------------------------------------------------------|---------|
| National Building Code of Canada<br>2010             | New residential, New non-residential, Existing<br>residential, Existing non-residential  | Canada  |
| National Energy Code of Canada<br>for Buildings 2011 | New residential, New non-residential                                                     | Canada  |
| Ontario Supplementary Standard<br>SB-10 2011         | Existing non-residential, Existing residential, New non-<br>residential, New residential | Ontario |
| Ontario Supplementary Standard<br>SB-12 2011         | Existing residential, New residential                                                    | Ontario |
| Quebec E-1.1 2012                                    | New residential, Existing residential                                                    | Quebec  |

#### Labels

BOMA BESt (Building Environmental Standards) Version 2 ENERGY STAR Portfolio Manager Benchmarking Tool LEED Canada (2009) LEED Canada (Existing Building: Operations & Maintenance)

#### Incentives

#### ecoENERGY Retrofit (2007)

**Source:** www.iea.org/beep

#### Online resource: Building energy efficiency policies database



| Prescriptive Compliance Path                                                                                                                              |             |                         |                 | Performance<br>Compliance | Energy Performance Compliance |                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------|-----------------|---------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prescriptive requirements apply to building envelope components, heating ventilating and air conditioning equipment, and potable water heating equipment. |             |                         |                 |                           | path                          | Performance compliance calculations determines the annual energy<br>consumption of a reference house and sets the minimum energy target for the<br>proposed house to that level.                           |
| Energy Requirement                                                                                                                                        | s:          |                         |                 |                           |                               | Energy Requirements:                                                                                                                                                                                       |
| Insulation                                                                                                                                                |             |                         |                 |                           |                               | Insulation                                                                                                                                                                                                 |
|                                                                                                                                                           |             |                         |                 |                           |                               | Reduction is limited by health and safety requirements.                                                                                                                                                    |
| Building assemblies abo                                                                                                                                   | ve ground:  | :                       |                 |                           |                               | Windows                                                                                                                                                                                                    |
| U-Values (W/m2.K)                                                                                                                                         | Floors      | Roofs, Attic            | Roofs,<br>Other | Walls                     |                               | Where fenestration and door to gross wall area is less than 17%, the reference house is set to 17%. Where fenestration and door to gross wall area is greater than 22%, the reference house is set to 22%. |
| Climate zone 4                                                                                                                                            | 0.214       | 0.145                   | 0.214           | 0.360                     |                               | Air Leakage                                                                                                                                                                                                |
| Climate zone 5                                                                                                                                            | 0.214       | 0.115                   | 0.214           | 0.325                     |                               | An assumed building airtightness of 2.5 air changes per hour (ACH) is applied to<br>the reference house. The proposed can measure airtightness or use an<br>assumed 2.5 ACH in the simulation.             |
| Climate zone 6                                                                                                                                            | 0.214       | 0.115                   | 0.214           | 0.325                     |                               | Space Heating System                                                                                                                                                                                       |
| Climate zone 7A                                                                                                                                           | 0.199       | 0.096                   | 0.199           | 0.325                     |                               | Reference house applies a prescriptive type system for the applicable fuel type                                                                                                                            |
| Climate zone 7B                                                                                                                                           | 0.199       | 0.096                   | 0.199           | 0.385                     |                               | Space Cooling System                                                                                                                                                                                       |
| Climate zone 8                                                                                                                                            | 0.199       | 0.096                   | 0.199           | 0.385                     |                               | Reference house applies a prescriptive type system for the applicable fuel type                                                                                                                            |
|                                                                                                                                                           |             |                         |                 |                           |                               | Water Heating System                                                                                                                                                                                       |
| Building assemblies in c                                                                                                                                  | ontact / be | low the ground          | ::              |                           |                               | Reference house applies a prescriptive type system for the applicable fuel type                                                                                                                            |
|                                                                                                                                                           | Floors,     | Floors,                 |                 | 14/- II-                  |                               | Compliance Softwares:                                                                                                                                                                                      |
| U-Values (W/m2.K)                                                                                                                                         | heated      | above the<br>frost lint | Roof            | Walls                     |                               | All energy modelling software used for code compliance calculations must<br>conform to ANSI/ASHRAE 140, "Evaluation of Building Energy Analysis Computer<br>Brograms"                                      |
| Climate zone 4                                                                                                                                            | 0.431       | 0.510                   | 0.510           | 0.503                     |                               | Programs"                                                                                                                                                                                                  |
| Climate zone 5                                                                                                                                            | 0.431       | 0.510                   | 0.510           | 0.336                     |                               | End-uses considered:                                                                                                                                                                                       |
|                                                                                                                                                           |             |                         |                 |                           |                               | Space cooling, Space heating, Ventilation, Water heating                                                                                                                                                   |

Prescriptive Compliance path



### Scenario:

A respected industry association claims that the building energy codes are out of date.

How do you go about testing this claim, and what do you do if this information is correct?

- What indicators are important in your country?
- What code types?
- How would the process work for you?

