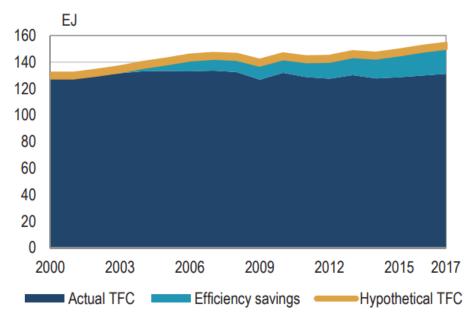


An introduction to decomposition analysis


Mafalda Silva and Charles Michaelis

Pretoria, 16 October 2019

IEA 2019. All rights reserved.

How to estimate energy savings from efficiency over time?

Source: adapted from IEA (2018) *Energy efficiency 2018,* based on the IEA Energy efficiency indicators database, 2018.

Estimated energy savings since 2000 in IEA reached approximately 21EJ, equivalent to energy consumption of Germany, France and UK together.

• Drivers of energy consumption: 3 main effects

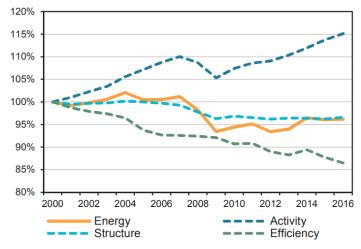
- Activity effect

- Change in the **overall level** of the activity / level of action that drives energy consumption.

- Structure effect (Activity mix)

- Change in the **mix of activities** within a sector

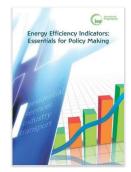
- Energy efficiency effect (Intensity)


- Changes in **sub-sectoral energy intensities** (i.e. energy used per unit of activity)

Understanding what drives energy consumption is complex

Purpose of decomposition analysis:

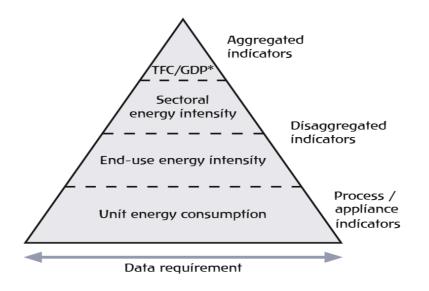
Quantify **contribution of specific factors** to the change in energy consumption between a base year and another point in time

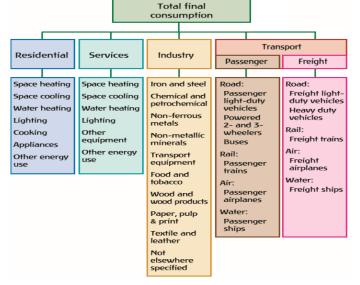

Source: IEA Energy Efficiency Indicators database (2018 edition) Need to disentangle different factors: activity, structure and efficiency

Decomposition analysis

- There are different methods the IEA uses the LMDI
 LMDI = Logarithmic Mean Divisia Index
- Can be applied to <u>specific subsectors</u> or <u>end uses</u> (e.g. space cooling, cars,...) to estimate the energy savings from efficiency.

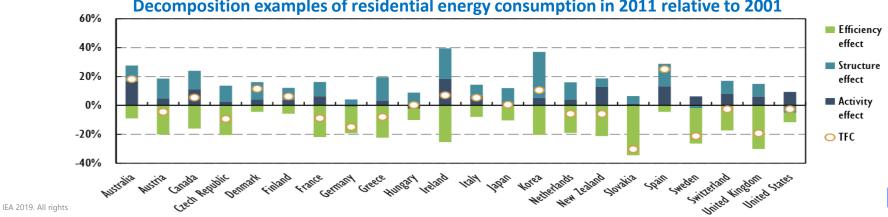
- > For more detail: Energy efficiency indicators: Essentials for policy makers:
 - to provide guidance to develop and interpret energy efficiency indicators
 - https://webstore.iea.org/energy-efficiency-indicators-essentials-for-policy-making


Data requirements and indicators for decomposition analysis


EEI data requirements

- Degree of disaggregation of EEI needed affects the data collection requirements
- Sub-sectoral /end-use energy consumption

Schematic representation of energy indicators


Schematic disaggregation of sectoral end-uses

Decomposition Analysis in Residential Sector

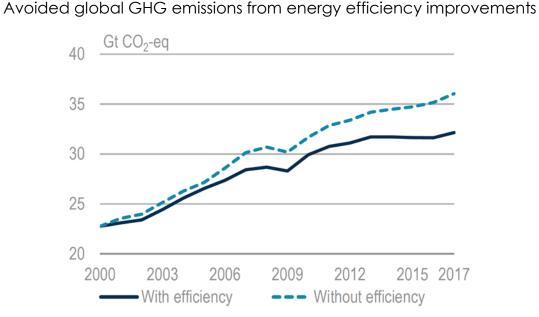
End-use	Activity (A)	Structure (S)	Intensity (I)		
Space heating	Population	Floor-area / Person	Space heating energy* / Floor-area		
Space cooling	Population	Floor-area / Person	Space cooling energy** / Floor-area		
Water heating	Population	Occupied-dwelling / Person	Water heating energy / Occupied-dwelling		
Cooking	Population	Occupied-dwelling / Person	Cooking energy / Occupied-dwelling		
Lighting	Population	Floor-area / Person	Lighting energy / Floor-area		
Appliances	Population	Appliance stocks / Person	Appliance energy / Appliance stocks		
* Adjusted energy using HDD compensation, ** Adjusted energy using CDD compensation					

Decomposition examples of residential energy consumption in 2011 relative to 2001

Decomposition Analysis in Industry Sector

• Metric examples for industry energy decomposition

Sub-sector	Activity (A)	Structure (S)	Intensity (I)
Food products, beverages, tobacco products (ISIC* 10-12)	Value-added	Share of Value-added	Energy / Value-added
Paper and paper products (ISIC 17)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Chemicals and chemical products (ISIC 20-21)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Non-metallic mineral products (ISIC 23)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Basic metal (ISIC 24)	Value-added	Share of Value-added, Production / Value-added	Energy / Value-added, Energy / Production
Fabricated metal products, machinery and equipment (ISIC 25-28)	Value-added	Share of Value-added	Energy / Value-added
Other industry (ISIC 10-32, excluding ISIC 19 and those described above)	Value-added	Share of Value-added	Energy / Value-added


Decomposition Analysis in Transport Sector

•	Metrics	examples	for	transport	energy	decomposition
---	---------	----------	-----	-----------	--------	---------------

Activity (A)	Structure (S)	Intensity (I)
Passenger-km	Share of Passenger-km, Registered Vehicle / Passenger-km	Energy / Passenger-km, Energy / Vehicle
Passenger-km	Share of Passenger-km, Passenger / Passenger-km	Energy / Passenger-km, Energy / Passenger
Passenger-km	Share of Passenger-km, Passenger / Passenger-km	Energy / Passenger-km, Energy / Passenger
Tonne-km	Share of Tonne-km, Tonne / Tonne-km	Energy / Tonne-km, Energy / Tonne
Tonne-km	Share of Tonne-km, Tonne / Tonne-km	Energy / Tonne-km, Energy / Tonne
Tonne-km	Share of Tonne-km, Tonne / Tonne-km	Energy / Tonne-km, Energy / Tonne
	Passenger-km Passenger-km Passenger-km Tonne-km Tonne-km	Passenger-kmShare of Passenger-km, Registered Vehicle / Passenger-kmPassenger-kmShare of Passenger-km, Passenger / Passenger-kmPassenger-kmShare of Passenger-km, Passenger / Passenger-kmTonne-kmShare of Tonne-km, Tonne-kmTonne-kmShare of Tonne-km, Tonne-kmTonne-kmShare of Tonne-km, Tonne-kmTonne-kmShare of Tonne-km, Tonne-kmShare of Tonne-km, Tonne-kmShare of Tonne-km, Tonne-km

Energy efficiency & emissions savings

Source: IEA (2018), *Energy Efficiency Market Report*, OECD/IEA, Paris.

Energy efficiency reduced GHG emissions by 4 GtCO₂-eq, or 12% of total CO2 emissions in 2017.

Energy REPUBLIC OF SOUTH AFRICA