Toolkit:
The relationship between product efficiency and price

Session 6
Kevin Lane, IEA – Pretoria, 15 October 2019

#energyefficientworld
Overview of the appliance and equipment training sessions

<table>
<thead>
<tr>
<th>Monday 14 October 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Introduction and roundtable</td>
</tr>
<tr>
<td>1 Planning energy efficiency programmes</td>
</tr>
<tr>
<td>2 Selecting products for MEPS and Labelling programmes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tuesday 15 October 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Assessing efficiency performance and setting MEPS</td>
</tr>
<tr>
<td>4 Special - Regional harmonisation</td>
</tr>
<tr>
<td>5 Industry transformation</td>
</tr>
<tr>
<td>6 Stakeholder involvement and communication</td>
</tr>
<tr>
<td>6 The relationship between product efficiency and price</td>
</tr>
<tr>
<td>7 Modernising energy efficiency through digitalisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wednesday 16 October 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Insights into energy labels</td>
</tr>
<tr>
<td>9 Monitoring, verification and enforcement</td>
</tr>
<tr>
<td>10 Evaluating policies and programmes</td>
</tr>
<tr>
<td>11 Special - Available resources U4E</td>
</tr>
<tr>
<td>11 Roundtable discussion, review and report back</td>
</tr>
</tbody>
</table>
Scenario

You have been asked to prepare an impact statement for your regulations, including the effect on product prices.

How would you go about the task of estimating future product prices?
Why are appliance costs/prices important?

- A core aim of energy efficiency programs is to deliver cost benefits to consumers

- In principle, any **additional costs** of more efficient equipment is offset by lifetime **savings in fuel bills**

- Consumer Life-cycle cost = Capital cost + lifetime running costs

- Often used to set performance thresholds, i.e. via least life-cycle costs
Consumer life-cycle costs

<table>
<thead>
<tr>
<th></th>
<th>Average product</th>
<th>Energy efficient product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capital Cost ($)</td>
<td>$300</td>
<td>$350</td>
</tr>
<tr>
<td>Running cost per annum</td>
<td>=150kWh x 0.2$</td>
<td>=120kWh x 0.2$</td>
</tr>
<tr>
<td></td>
<td>= $30</td>
<td>= $24</td>
</tr>
<tr>
<td>Lifetime (years)</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Total lifetime cost (LC)</td>
<td>= 300 + (30 x 12)</td>
<td>= 350 + (24 x 12)</td>
</tr>
<tr>
<td>LC</td>
<td>$660</td>
<td>$638</td>
</tr>
</tbody>
</table>
Setting MEPS at Least Life-cycle cost

- Life-cycle Cost (€)
- Energy Efficiency
- Base Case Product
- Improvement A
- Improvement B
- Minimum Life-cycle Cost (LLCC)
- Improvement C
- Improvement D
- Best Product

Current efficiency level

Proposed MEPS level
Impact of product prices on setting MEPS

• If you are setting MEPS based on least life-cycle cost....

• What impact is there if efficient products costs are higher/lower?
Setting MEPS at Least Life-cycle cost

Life-cycle Cost (€) vs. Energy Efficiency

- Base Case Product
- Improvement A
- Improvement B
- Minimum Life-cycle Cost (LLCC)
- Improvement C
- Improvement D
- Best Product
What is actually happening to product prices?

- So that is the theory

- Now lets look at what is actually happening........
Thailand – Retail price vs capacity (and country manufacture)

Retail price normalised by capacity versus SEER, by country of manufacture

- Thailand
- China
- Malaysia
- Vietnam
- Korea

MEPS ASEAN 2020 3.08 W/W
Thailand - Retail price vs capacity (and technology)

Retail price normalised by capacity versus SEER, by type

- Inverter - not popular
- Fixed - not popular
- Inverter - popular
- Fixed - popular

Retail price per 12,000 BTU/h

SEER (W/W)
Ratcheting MEPS have reduce energy consumption of new US refrigerators by 75%
Analysis: Impact of Refrigerator Standards: Energy Consumption in the USA

Analysis: Impact of refrigerators standards in Ghana

Source: Kofi Agyarko, IEA EE Global 2018
Analysis: Impact of Clothes Washer Standards on Annual Energy Consumption in the US

Source: IEA 4E, Achievements of appliance energy efficiency standards and labelling programs - A Global Assessment in 2016
Examination of MEPS impacts: Cold appliances: % change

Source: IEA 4E, Achievements of appliance energy efficiency standards and labelling programs - A Global Assessment in 2016
Examination of MEPS impacts: other appliances: % change

United States (clothes washers) | Australia (clothes washers) | Australia (clothes dryers) | United States (a/c) | Japan (a/c)

-40% | -35% | -30% | -25% | -20% | -15% | -10% | -5% | 0% |

Source: IEA 4E, Achievements of appliance energy efficiency standards and labelling programs - A Global Assessment in 2016
What does this tell us?

- No evidence that Standards and Labeling policies have increased real prices to consumers
 - Some minor movements, usually explained by other factors

- Generally average real prices for studied products have fallen faster than for other goods in these markets

- No correlation with energy/electricity prices
 - Increasing energy price is a less effective policy, and has inequity issues

- Manufacturers confirm that, given notice, energy efficiency requirements can be absorbed into design process with little or no extra cost
What does this tell us?

- No correlation between product price and efficiency

- However, sometimes the most efficient products are also the most expensive, because:

- High priced products differentiate through:
 - branding
 - quality of materials
 - design
 - energy efficiency is a further indicator of quality
Implications for policy

• So how does this impact on our policy settings?
<table>
<thead>
<tr>
<th>Appliance Type</th>
<th>DOE estimate price BEFORE</th>
<th>Census prices AFTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerators</td>
<td>56</td>
<td>37</td>
</tr>
<tr>
<td>Clothes washers</td>
<td>54</td>
<td>-35</td>
</tr>
<tr>
<td>Clothes washers</td>
<td>199</td>
<td>10</td>
</tr>
<tr>
<td>Electric water heaters</td>
<td>108</td>
<td>28</td>
</tr>
<tr>
<td>Non-electric water heaters</td>
<td>121</td>
<td>34</td>
</tr>
<tr>
<td>Central ac</td>
<td>267</td>
<td>207</td>
</tr>
<tr>
<td>Room ac</td>
<td>13</td>
<td>-162</td>
</tr>
<tr>
<td>Commercial ac</td>
<td>512</td>
<td>-224</td>
</tr>
<tr>
<td>Ballasts</td>
<td>6.73</td>
<td>-1.78</td>
</tr>
<tr>
<td>Average</td>
<td>148</td>
<td>-12</td>
</tr>
<tr>
<td>Median</td>
<td>108</td>
<td>10</td>
</tr>
</tbody>
</table>
Why did we get it wrong?

- Predictions made prior to regulations based on engineering analysis
- Observed prices may be 5-10 years later
- In the meantime:
 - Regulations stimulate growth in the market
 - Costs have reduced as the market share has grown
 - Some shift to offshore manufacturing
 - Companies find innovative solutions
 - Technologies rarely predicted
Price changes over time

- **Assumed price premium**
- **Existing products**
- **Efficient product – new technology**
- **Observed price premium**

Time:
- Engineering analysis
- Retrospective analysis

Regulations
Conclusions

• Current cost-benefit analysis tends to overstate the future costs of efficient appliances
 - Politically conservative

• Observations fit ‘learning-by-doing’ model

• Suggests that we have not been optimising policies to reduce energy and CO$_2$

• Policies could be more stringent and still show positive benefits

• Some countries now reduce estimates for future cost impacts
Resources

• www.iea.org/efficiency

• www.iea-4E.org