

6. Utilities 2: Lighting and other urban services

Mel Slade, IEA Pretoria, 15 Oct 2019

Y IEA #energyefficientworld

Training Overview

6. Utilities: Lighting and other urban services

Scenario: Local residents are complaining about dark and unsafe streets

Question: What can you do to reduce energy use in public lighting and improve service delivery?

Training Overview

Energy use in Lighting

Energy use and impacts

10 mins

2. Strategies for energy efficiency

Lighting service, technology replacement, management systems

10 mins

3. Activity: risk mitigation measures in lighting

10 mins

4. Other Urban Services

- District energy systems: district energy concept; waste heat integration and sector coupling
- Waste management: waste generation, impacts, energy recovery opportunity, technologies, and policies

30 mins

1. Energy use in lighting

1. Energy use in lighting: Energy use and impacts

From a national point of view, costs of public lighting are small. However it is a big strain on local budgets.

1. Energy use in lighting. Need to sustain/improve lighting services

Road safety: 30% reduction in collision, 43% reduction in night time accidents

Lower crime: 7% reduction in New York, 39% reduction in UK

Inability to sustain optimum lighting service affects important social service provided by public lighting. Expanding these are the common goals of a growing municipality

1. Energy use in lighting. How does your city compare?

1. Energy use in lighting. How does your city compare?

Potential electricity savings per sector (MWh/a) across the nine cities of the South African Cities Network (SACN)

Source: South African Cities Network (2014) http://sacitiesnetwork.co.za/wp-content/uploads/2014/07/Modelling-Energy-Efficiency-Potential-in-SACN-Cities-full-report.pdf

Breakdown of energy efficiency projects identified within South African cities Integrated Development Plans

Source: Sustainable Energy and Climate change in municipal IDPS (2017)http://www.cityenergy.org.za/uploads/resource_475.pdf

The potential impact for energy savings in street lighting in South African municipalities is significant (~23%). Progress in retrofitting of street lighting has already occurred with more planned as stated in IDPs.

Manage systems better

Replace technology

Install smarter systems

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Replace lamps with more efficient technologies Install smarter lighting management systems

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Saving energy can already be done with same technologies, using only better design

Manage systems better

- Proper design and orientation of fixtures
- Fixing broken wiring, burnt or damaged lamps and posts

 Proper maintenance reduce excess electricity use caused by faulty fixtures

Replace technology

 Replace lamps with more efficient technologies • LED lamps significantly more efficient than other street lighting technology

Replace technology

 Replace lamps with more efficient technologies Case Study: Ann Arbor, USA pilot project spent 472\$ additional cost per fixture but pays back in 4.7 years, resulting to 97% positive response

80%

Energy use reduction

100\$
Saving per
fixture

2200 tons Avoided CO2 emissions

Replace technology

 Replace lamps with more efficient technologies • Case Study: Before and after illustration of street lighting retrofit in Los Angeles, CA that saw the installation of over 140,000 LEDs

Replace technology

 Replace lamps with more efficient technologies • **Case Study:** Potential in India to save on street lighting by 2020 using the current generation LED lamps in replacing the existing lamp technologies.

Install smarter systems

 Install smarter lighting management systems • **Case Study:** Ho Chi Minh and Quy Nhon City, Vietnam. Dimming system (bipower ballasts) in 30000 streetlights during low traffic, cutting energy consumption by 40%

2. Strategies for energy efficiency. Delivering change

3. Deliver

2. Strategies for energy efficiency. Delivering change

3. Activity

3. Activity: Risk mitigation measures

3. Deliver

Think about possible options in order to mitigate these common risks associated with public lighting

Type of Risk	Risk Manifestation	Risk mitigation measures
Technical risk	Failure of luminaries	?
Performance risk	Failure of installed lighting system	?
Financial risk	Failure to make payments	?

3. Activity

3. Deliver

ACTIVITY

Take 15-20 minutes to discuss possible risk mitigation methods in delivering energy efficient public lighting

3. Activity

3. Deliver

Type of Risk	Risk Manifestation	Risk Mitigation Measure	Example
Technical Risk	Failure of LED luminaires	Obtain product warranty from LED luminaire manufacturer	Ontario, Canada
		 Extensively test luminaires with external technical assistance 	Quezon City, Philippines
		Obtain third-party certification of luminaires	Guadalajara, Mexico
Performance	Failure of	Conduct extensive pilots	Quezon City, Philippines
Risk	installed LED system	Outsource risk to private sector by procuring "lighting service" with performance penalties in PPP contract	Birmingham, United Kingdom
		Outsource risk to private sector contractors by using EPC contracts	EESL in Vizag, India
		Conduct own maintenance	Guadalajara, Mexico
		• Extensively search and procurement of a trusted operator	Ontario, Canada
Financial Risk	Failure to make payments	 Secure state government guarantees 	Guadalajara, Mexico
		 Secure commercial bank guarantees 	AEL, India
		 Work with private sector with substantial resources 	Birmingham, United Kingdom

Resources

Key Resources. Lighting

Tracking Clean Energy Progress https://www.iea.org/tcep/buildings/lighting/

SEAD Street lighting tool https://superefficient.org/tools/street-lighting-tool

United 4 Efficiency https://united4efficiency.org/products/lighting/

IEA's Technology Collaboration Platforms https://ssl.iea-4e.org/

lites.asia (last update 2017) http://www.lites.asia/

Key Resources. Lighting

Guide for energy efficient street lighting installations https://ec.europa.eu/energy/intelligent/projects/sites/iee-projects/files/projects/documents/estreet_e_street_guide_en.pdf

Efficient public lighting guide (South Africa) http://www.cityenergy.org.za/uploads/resource_1 7.pdf

Proven Delivery Models for LED Public Lighting https://www.esmap.org/node/57252

6. Utilities 2: Other urban services

1. District Energy Systems

District Energy Systems: The Case for DES

1. Reduction of peak electricity

 For heating/cooling systems normally connected to the grid, having alternative sources reduces peak

2. Fuel diversity

- Low value heat could produce heating or cooling

3. Frees up space for buildings

- Space could be used for stormwater retention for water recycling
- Space could also be used for green roofs to help reduce urban heat island effect

District Energy Systems: Case Studies

- In Paris, district cooling led to:
 - **35% lower electricity** consumption
 - 50% reduction in CO2 emissions

 In India, a reduction from 240MW to 135 MW (44% lower) in electricity consumption is expected from the GIFT City

District Energy Systems: Becoming more efficient and sustainable

REPUBLIC OF SOUTH AFRICA

Key Resources

https://www.districtenergy.org

http://www.districtenergyinitiative.org/

INTERNATIONAL ENERGY AGENCY
TECHNOLOGY COLLABORATION PROGRAMME ON

District Heating and Cooling including Combined Heat and Power

http://wedocs.unep.org/bitstream/handle/20.500.11822/9317/-

District energy in cities unlocking the pot ential of energy efficiency and renewable _ene.pdf?sequence=2&isAllowed=y

https://www.iea-dhc.org

2. Waste

Waste Management. Trends

Waste generation per capita

Waste collection rate

Solid waste generation is often driven **by purchasing power**. Their subsequent collection would be crucial in the energy recovery.

Waste Management. Impacts

Bantar Gebang Landfill, Indonesia https://www.dailymail.co.uk/travel/travel_news/article-4455690/Images-reveal-life-inside-Indonesian-rubbish-dump.html

GHG and other emissions

682.2 ktCO2-eq per year (estimated in Jakarta) Additional air pollution from uncontrolled incineration

Migration of leachate into groundwater Water treatment energy intensity increases (Session 5)

Changes in surrounding flora and fauna

Unmanaged solid waste can result to multiple knock on effects that increase social problems for the local authority

Opportunity for managing waste can also reduce the municipality's net energy consumption.

DIGESTION

- For municipal waste with high organic wastes, it could be digested to produce biogas
- Controlled methane generation for gas networks or cogeneration use
- Requires land space

INCINERATION

- Recovery of high value energy that can be use for **electricity generation** and **heating** if there is high amount of combustibles in the municipal waste (less organic waste)
- Reduces stronger GHG emissions (landfill methane converted to CO2 instead)
- High capital costs

Waste-to-Energy

- 90% reduction of trash volume
- Power generation
- Pollution control

www.ecomaine.org

Case Study: Potential of Closed landfill with gas collection (Philippines)

Installation of small engine generator set can allow the landfill to sell electricity with IRR of 1%

However, aim for reduction. Energy recovery allows reduction of existing waste but will not be a long term solution

Waste Management in South Africa's Integrated Development Plans

Breakdown of number of projects by project category in IDPs

Source: Sustainable Energy and Climate change in municipal IDPS (2017) http://www.citvenergy.org.za/uploads/resource 475.pdf

Sustainable waste management was the second most prevalent project type after energy efficiency among IDP plans. Recycling projects made up all of the sustainable waste management projects listed.

Key Resources. Waste Management

Waste to Energy technologies https://www.worldenergy.org/wpcontent/uploads/2013/10/WER_2013_7b _Waste_to_Energy.pdf

Solid Waste Management http://www.unep.or.jp/ietc/publications/s pc/solid_waste_management/Vol_I/Binde r1.pdf

Poll Time! Cities 4: Barriers

Access the polls here:

About

Maps

Polls

Stay connected

Search

Q: What are the common barriers that you find in implementing municipal **EE** projects

- Financing
- Lack of local authority
- Lack of capacity
- Lack of public support

