

5. Utilities 1: Water Management

Mel Slade, IEA

Pretoria, 15 October 2019

IEA 2019. All rights reserved.

Utilities: Water Management

Scenario: Local residents are complaining about unreliable and costly drinking water supply

Question: What can you do to reduce energy use in the water sector and improve service delivery?

1. Energy use in water

- Context: Water-energy nexus, increasing demand
- Drivers of energy use
- 2. Tools: Strategies for energy efficiency
 - Reducing energy use; recover energy; time energy use
- 3. Activity : Barriers to water energy efficiency

10 mins 30 mins

10 mins

- This session starts the municipal services section. Like other sessions we first call attention to the water sector and the importance of sustainable water service through energy efficiency
- We examine the drivers of energy use in the water sector as this will be the basis of energy efficiency programmes in the water sector.
- We then go to a structured discussion of case studies of how energy efficiency is implemented, from energy use reduction, energy recovery, and demand side response.

The activity is designed to organise the thoughts

of participants towards consequences of barriers and the solutions possible. This allows them to map out possible barriers that might be silently affecting their revenues, hence their ability to take out a loan for EE investments.

1. Energy use in water

1. Energy use in water: Context

Share of population without access to electricity or water in rural areas

Access to safe drinking water and energy costs associated with it remains a challenge in developing and emerging economies

1. Energy use in water: Context

Energy and water sector consumption

Electricity consumption in the water sector by process, 2014-2040

energy

Energy REPUBLIC OF SOUTH AFR

Source: https://www.

Energy is needed to obtain, process, and distribute water and water is also needed to keep energy services running. Energy efficiency is hence, important to provide both services

1. Energy use in water: Context in South Africa

Potential electricity savings per Sector (MWh/a) in 9 cities of the South African Cities Network (SACN)

The water supply and wastewater treatment sectors have the highest electricity efficiency savings potential among the electricity consuming sectors in South African municipalities.

1. Energy use in water: Drivers

1. Energy use in water: Drivers - Extraction

Source: EPRI Water and Sustainability Volume 4 https://www.epri.com/#/pages/product/1006787/

Source and location of water for extraction dictate the complexity of treatment and add extra energy use

1. Energy use in water: Drivers - Treatment

Source: https://www.researchgate.net/publication/257935517_The_unintended_energy_impacts_of_increased_nitrate_contamination_from_biofuels_production/figures?lo=1 Treatment technologies affect energy consumption and is highly influenced by the source of the raw water

1. Energy use in water: Drivers - Pumping

Source EPRI Solutions (2005). Bringing Energy Efficiency to the Water & Wastewater Industry: How Do We Get There? WEFTEC

Pump motors run almost non-stop. Improperly sized pumps or inefficient motors result to higher energy cost. Technologies like VFD ensure high efficiency even with varying demand

1. Energy use in water: Drivers - Distribution and end-use

Leakages, blockages, and scales in piping all contribute to higher pumping energy use for the same water service delivered

1. Energy use in water: Drivers - Sewage treatment

Sewage treatment depend on the conditions of the wastewater, but the major contributor to cost is the efficiency of the aerators and their motors

1. Energy use in water: South Africa's municipal context

Potential electricity savings per Sector (MWh/a) in 9 cities of the South African Cities Network (SACN)

Example of Energy Savings Performance Contract for Water Loss Reduction and EE Improvement in Emfuleni

Competitive bidding process

 Municipal water utility Metsi-a-Lekoa of Emfuleni signed a water and energy performance contract with WRP Engineering Consulting Company under BOT- 5 year contract

 "Shared savings agreement" in the contract: WRP received remuneration based on verified energy and water savings

Reduce Energy use

 Energy management systems

 Improve motor efficiencies

Improve controls

Recover Energy

Anaerobic biodigestion of sewage to recover energy Time Energy use

 Stagger activities towards off-peak hours

Reduce Energy use

Energy management systems allow an organised approach of measurement and operational action towards saving energy

Energy management systems

- Improve motor efficiencies
- Improve controls

• Example: Brasilia Federal District Water EnMs

- Growing population, informal urban settlements, old pipes
- Growing difficulty to provide service as demand increases
- The provision of **management systems allowed systematic** identification of **water loss as major problem** due to adoption of management system.

http://www.acquacon.com.br/waterloss2010/presentations/day7/17h00eltongoncalvesdia07sala2.pdf

Reduce Energy use

Example: Brasilia Federal District EnMs (major steps)

- Conducted auditing and data collection
- Summarize sources of energy consumption

Energy management systems

 Improve motor efficiencies

Improve controls

Specify Units for Oth		Itility Type (if any) sumption (if any)	Propane GAL	
2011	_		_	
Electric (\$/kWh)	\$0.1018	Natural	Gas (\$/CCF)	\$1.1504
2011 💌	January	February	March	April
Electricity Cost (\$) 2011	\$18,184.32	\$19,492.46	\$19,247.76	\$19,704.16
Consumption (kVh) 2011	196,800	189,800	187,600	192,800
Natural Gas Cost (\$) 2011	\$6,146.54	\$5,556.68	\$5,015.30	
Consumption (CCF) 2011	5,276	4,782	4,331	
No 2 Fuel Oil Cost (\$) 2011	\$16,231.03	\$11,166.71	\$8,587.05	
Consumption (CCF) 2011	14,260	10,279	8,478	5,237
Vater & Sever Cost (\$) 2011	\$12,320.06	\$12,320.06	\$11,741.82	\$11,741.82
Consumption (GAL) 2011	2,210,986	2,210,986	2,107,257	2,107,257
Alternative Energy Cost (\$) 2011	\$1,914.90	\$2,035.80	\$2,571.40	\$2,394.60
Consumption (CCF) 2011	1,473,000	1,566,000	1,978,000	1,842,000
Other - Propane Cost (\$) 2011	\$1,070.30	\$1,535.60	\$2,324.30	\$3,180.10
Consumption (GAL) 2011	973,000	1,396,000	2,113,000	2,891,000
Total Utility Cost 2011	\$55,867.15	\$52,107.31	\$49,487.63	\$45,391.
Treatment Volume (MGAL) 2011	112.240	107.500	116.700	118.400
Utility Cost/Treatment Volume (\$/ME	\$497.75	\$484.72	\$424.06	\$383.3
Electric Utilization (kWh/MGAL) 2011	1,753.39	1,765.58	1,607.54	1,628.3

Major Process/Top Energy Use Systems	Electric Energy Use (%)	Electric Energy Use (kWh)	Electric Energy Cost (S)
#1 SECONDARY TREATMENT	64.60%	1,452,103	\$146,953
#2 FIXED FILM TREATMENT	10.62%	238,639	\$24,150
#3 ANAEROBIC DIGESTION	5.88%	132,289	\$13,38
#4 LIGHTING	4.98%	111,865	\$11,32
#5 PRIMARY TREATMENT	4.89%	109,930	\$11,12
Balance of Plant Identified	8.51%	191,404	\$19,370
Balance of Plant Unidentified	0.52%	11,770	\$1,19
Total	100.00%	2,248,000	\$227,497

EQUIPMENT INVENTORY: BREAKDOWN OF ELECTRICAL ENERGY USE FOR MAJOR/ENERGY INTENSIVE EQUIPMEN

Motor Efficiency (%)	Efficiency Rating	Electric Energy Use (%)	Electric Energy Use (kWh)	Electric Energy Cost (S)
88	Medium	2.48%	55,696	\$5,636.40
N/A	N/A	0.80%	18,000	\$1,821.60
85	Medium	0.56%	12,581	\$1,273.16
85	Medium	0.62%	13,979	\$1,414.63
85	Medium	1.43%	32,034	\$3,241.85
91	High	0.91%	20,363	\$2,060.77
	(%) 88 N/A 85 85 85 85	(%) 88 Medium N(A N/A 85 Medium 85 Medium	(h) (h) 88 Medium 2.45% N/A N/A 0.05% 85 Medium 0.55% 65 Medium 0.62% 65 Medium 1.43%	(h) (h) (k) (k) 88 Mealum 2,43% 55,555 N/A N/A 0,80% 18,000 85 Mealum 0,56% 13,031 85 Mealum 0,65% 13,379 85 Mealum 0,65% 13,379 85 Mealum 1,43% 22,034

Images are representation only of the process undertaken and not the actual data of CAESB Images from: https://www.epa.gov/sites/production/files/2016-01/documents/nrwa-energy-audits-for-small-utilities-8-4-14.pdf

Reduce Energy use

 Energy management systems

- Improve motor efficiencies
- Improve controls

• Example: Brasilia Federal District EnMs

 EnMs allowed them to measure costs of water losses, identify billing problems, and find optimum solutions based on cost and benefit. Resulted to immediate 25% reduction in water loss and energy savings in the first 3 years

http://www.acquacon.com.br/waterloss2010/presentations/day7/17h00eltongoncalvesdia07sala2.pdf

Reduce Energy use

 Energy management systems

 Improve motor efficiencies

Improve controls

- EnMS can be executed by third party through energy service performance contracts
- **Case study:** Water Loss Reduction and EE Improvement in Emfuleni
 - Competitive bidding process, "Shared savings agreement" where contractor received remuneration based on verified energy and water savings
 - 14, 250MWHr annual electricity savings
 - USD 3.8 M per year in savings
 - 7-8 million m3 annual water savings

Source: ESMAP, 2010, Good Practices in City Energy Efficiency, http://www.esmap.org/esmap/node/231

Reduce Energy use

- Energy management systems
- Improve motor efficiencies
- Improve controls

 Replacing motors: Savings could go up to 1500 GWhr/yr depending on motor size and hours of operation

Source https://betterbuildingssolutioncenter.energy.gov

Reduce Energy use

Example: Motor replacement in wastewater aerators in Green Bay Wisconsin

 Energy management systems

 Improve motor efficiencies

Improve controls

50% reduction in electricity

2.14 GWh/year savings = 126 homes

Source https://www.epa.gov/sites/production/files/2015-08/documents/wastewater-guide.pdf

Reduce Energy use

Example: Motor replacement in pumping in Columbus Georgia

 Energy management systems

 Improve motor efficiencies

Improve controls

25% reduction in electricity \$250 000 in energy cost

1-year payback period

Source https://www.epa.gov/sites/production/files/2015-08/documents/wastewater-guide.pdf

Reduce Energy use

- Energy management systems
- Improve motor efficiencies

Improve controls

 Fluctuations in biological load can change over a 24-hr period, hence aeration could be adjusted if it were automatic. Manual or poor control can cause excess energy use by as much as 50-65%

Source https://betterbuildingssolutioncenter.energy.gov

Recover Energy

Ramping up energy recovery helps achieve SDG 6.2 (sanitation for all) and SDG 6.3 (halving the percentage of untreated water) by 2030

 Anaerobic biodigestion of sewage to recover energy

Time Energy use

• **Example:** South Africa study with **2.21MW** of load shift achieved, with around **69k USD annual savings**

 Stagger activities towards off-peak hours

https://repository.nwu.ac.za/bitstream/handle/10394/15212/Els_LA_2015.pdf?sequence=1

Time Energy use	 Example: Electricity cost savings and opportunities in Ann Arbor > shifting filter backwash cycles to off-peak reduced energy costs from demand 		
Stagger activities towards off-peak hours	9000 USD investment 1500-2000 USD per month in cost savings		

- **Subsidies:** Are the subsidies targeting the right people? Are they consumed by the rich or the industrial consumers?
- Financing: Is billing and collection easy? Is budget secured?
- **Training:** Are the operators capable of spotting energy efficiency problems and conducting the repairs and improvements needed?

On three tables, discuss consequences and possible solutions on the following barriers: regulatory/institutional; economic; information/capacity

Regulatory/Institutional		
Barrier	Consequence	Solution

Economic		
Barrier	Consequence	Solution

Information/Capacity				
Barrier	Consequence	Solution		
		energy		

On three tables, discuss consequences and possible solutions on the **following barriers**: regulatory/institutional; economic; information/capacity

Regulatory/Institutional	Economic	Information/Capacity
Politicised water/sewage tariffs	Low credit rating of water utilities	Inadequate management information about EE
Subsidised water/electricity	Small size of EE investments (individual EE measures)	Lack of knowledgeable operators doing EE
Budgeting structure constraints	Underdeveloped EE financing market	
Roles and responsibilities of operational staff and procurement within the utility is fixed	Expensive EE technologies	

ACTIVITY (feel free to add additional barriers based on your experience)

Potential answers				
Regulatory/Institutional				
Barrier	Consequence	Solution		
Politicised water/sewage tariffs	Lack of revenue, affecting revenue and subsequent capability to invest in EE improvements	Sectoral reform: increase financial sustainability as a priority along with social concerns on water		
Subsidised electricity	Lack of revenue, affecting revenue and subsequent capability to invest in EE improvements	Subsidy reforms / sectoral reform		
Budgeting structure constraints	Reliance on operating cost from municipality reduces incentive to invest in EE improvements	Sectoral reform: increase independence of utility to reduce reliance on municipality		
Roles and responsibilities of operational staff and procurement within the utility is fixed	Lack of system-wide understanding and hence decisions regarding energy	Establish energy management team which has a mandate to control energy cost		

Potential answers

Economic		
Barrier	Consequence	Solution
Low credit rating of water utilities	Difficult to access EE for investment	Part of national effort to increase EE policy framework, energy
Small size of EE investments (individual EE measures)	Difficult to gain commercial bank attention for smaller loans	services and financing opportunities - Reduce risks through
Underdeveloped EE financing market	Many financially attractive EE investments cannot be implemented	 Guarantee facilities Bundling through 3rd party arrangements like ESCOs Dedicated fund/credit lines Tax credits for EE equipment (check colleagues at AE)
Expensive EE technologies	Difficult to justify practicality of purchase	Bulk purchasing could reduce price of supply

¢.

120

Potential answers				
Information/Capacity				
Barrier	Consequence	Solution		
Inadequate management/government information about EE	Lack of interest to support EE interventions	 Develop and disseminate case studies and good practices Develop centralized platforms for knowledge sharing Develop benchmarking and assessment tools to guide decision making Awards and recognition 		
Lack of knowledgeable operators doing EE	Inability to identify energy saving opportunities	 Conduct training and peer-to-peer learning Learning energy efficiency networks (Check Industry stream colleagues) 		

5

led

Resources

Resources

https://www.esmap.org/sites/default/files/esmap-files/FINAL_EECI-WWU_TR001-12_Resized.pdf

https://www.epa.gov/sites/production/files/2015-08/documents/wastewater-guide.pdf

Resources

http://www.oecd.org/cfe/regional-policy/OECD-Principles-on-Water-Governance.pdf

Urban Water Supply and Sanitation in Southeast Asia

A Guide to Good Practice

Arthur C. McIntosh

ASIAN DEVELOPMENT BANK

https://www.pseau.org/outils/ouvrages/adb_urban_water_s upply_and_sanitation_in_southeast_asia_a_guide_to_good_ practice_2014.pdf

Energy REPUBLIC OF SOUTH AFRICA

Additional slides

Energy use in water: Context in Southeast Asia

In Southeast Asia, cost is high but often, the quality does not match the price

Energy use in water: Drivers - Pumping

Source https://w3.siemens.com/drives/global/en/motor/low-voltage-motor/efficiency-standards

Pump motors run almost non-stop. Improperly sized pumps or inefficient motors result to higher energy cost. Technologies like VFD ensure high efficiency even with varying demand

Strategies for energy efficiency. Reduce

Reduce Energy use

 Example: Leak management system allowing preventive maintenance and timing of replacement

 Energy management systems

- Improve motor efficiencies
- Improve controls

Preventive maintenance

Source https://www.viavisolutions.com/en-us/products/seeker-d-mca-iii

Timing of replacement

Energy REPUBLIC OF SOUTH AFRICA