

7. Toolkit:

Policy instruments available to improve the fuel economy of cars

Transport: Session 7 Jacob Teter - IEA Jakarta, 19 July 2018

#energyefficientworld

What is fuel economy?

Fuel economy: the relationship between the fuel used and distance travelled by a vehicle

This map is without prejudice to the status of or sovereignty over any territory, to the delineation of international frontiers and boundaries, and to the name of any territory, city or area.

Important relationship:

About 2.4 kg of CO₂ emitted per litre of gasoline burned, 2.6 for diesel.

- For gasoline vehicles, 8 L/100 km = 189 g/km CO2 emissions, 7 L/100 km = 165 L/100km, etc.
- It's a fixed relationship.
 So the only way to cut CO₂ emissions is to burn less fuel (you can't capture it at the tailpipe).

If you improve vehicle fuel economy, you:

- Save fuel
- Reduce costs
- Cut CO₂ emissions
- Don't help air quality very much (though complex and important topic)

Fuel economy improvements can be achieved through:

- Technical changes to vehicles
- Changing the types of vehicles bought
- Improving vehicle maintenance
- Changing the way vehicles are driven (ecodriving)
- Reducing traffic congestion

Fuel economy improvement to vehicles should be part of a broader strategy:

- Traffic management
- City and regional planning
- Promotion of public transit
- And many others...(avoid-shift)

 The average 2015 car, at 15-25% efficiency, has many energy losses – and many efficiency opportunities

Sources: Lutsey, 2012; Kromer and Heywood, 2007; U.S. EPA (http://www.fueleconomy.gov/feg/atv.shtml)

Types of Air Pollutants

Air quality pollutants affect human health

- NOx
- Non-methane hydrocarbons
- Particulate matter (PM)
- carbon monoxide
- Toxic emissions (e.g. benzene)
- Heavy metals

- Methane
- Black carbon

• N₂0

Air pollutants affect the climate

• CO₂

Fuel quality / tailpipe controls

Fuel economy improvement

	2020	2030	2050
New Cars	30% reduction* in L/100km compared to 2005	50% average improvement globally	50% + globally
	Engines, drive- trains, weight, aerodynamics.	Hybridisation of most models.	Significant contributions from Plug-in vehicles
Total fleet	20% reduction	35% reduction	50by50
	With lag time for stock turnover; includes eco-driving, maintenance		

Table 1 • Global fuel economy developments, 2005-15

			2005	200)8	201	0	2012	20	14	2015	2030
	average fuel economy (Lge/100 km)		8.8	8.2	2	7.8		7.6	7	.4	7.3	
average	appual improvement rate (% per vear)		-2	.3%	-2.8	%	-1.6	% -1	3%	-0	.5%	
		annuar miprovement rate (% per year)				-	1.8%		_			
	average fuel econ	omy (Lge/100 km)	8.5	8.	5	8.4		8.2	8	.0	7.9	
NON-UECD	annual improvement rate (% per year)		-0	0.1%	-0.3	%	-1.4	% -1	2%	-1	.6%	
average			-0.8%									
Global average	average fuel economy (Lge/100 km)		8.8	8.3	3	8.1		7.8	7	.6	7.6	4.4
	annual improvement rate (% per year)		-1	8%	-1.6	%	-1.3	% -1	.3%	-1	.1%	
			-1.5%									
	2005 basav						_	7 9 %				
GFEI target	required annual	2005 base year					-4	2.0/0				
	(% per year)	2015 base year										
											-	3.7%

Fuel economy trends and market size

- Significant fuel economy improvement if policies are in place
- Size shift vs. technology evolution moderates Non-OECD improvement
- Growth of markets with worse fuel economy affects global trend

Even ICE LDVs still have tremendous potential:

ICE potential, through hybridization and light-weighting (NRC, 2013)

FIGURE 2.1 Historical and projected light-duty vehicle fuel economy. NOTE: All data is new fleet only using unadjusted test values, not in-use fuel consumption.

What can the GFEI targets achieve?

Meeting GFEI targets can stabilize global light-vehicle CO_2 emissions, despite more than a doubling of vehicle fleet.

© OECD/IEA 2018

Four key fuel economy policies

- I. Fuel economy labeling
 - Based on tested fuel economy
 - Need to make available to consumers before purchase (internet, car window stickers)
- II. Fuel pricing
 - Taxation system should at least internalize externalities
 - CO₂ tax will help diversify fuels as well as encourage fuel economy

III. Fuel Economy Standards

- Typically corporate average standards
- Typically either vehicle mass or size based
- Can be applied to 2nd hand vehicles

IV. Vehicle purchase taxes

- Sales tax, registration tax, import duties
- Can be differentiated by fuel economy or CO2 emissions
- Germany also differentiates by pollutant emissions levels

Four key fuel economy policies

- I. Fuel economy labeling
 - Based on tested fuel economy
 - Need to make available to consumers before purchase (internet, car window stickers)
- II. Fuel pricing
 - Taxation system should at least internalize externalities
 - CO₂ tax will help diversify fuels as well as encourage fuel economy

III. Fuel Economy Standards

- Typically corporate average standards
- Typically either vehicle mass or size based
- Can be applied to 2nd hand vehicles

IV. Vehicle purchase taxes

- Sales tax, registration tax, import duties
- Can be differentiated by fuel economy or CO2 emissions
- Germany also differentiates by pollutant emissions levels

equivalent)

gasolin

Fuel Economy Standards

 Global fuel economy standards for passenger cars (left) and light trucks (right), normalized to NEDC

* Note that Japan has already met its 2020 statutory target as of 2013

Key elements to consider when introducing fuel economy standards

- 1. Regulated metric
- 2. Form of target curve + underlying attribute
- 3. Target timeframe/limit value

1. Regulated metric

Country or Region	Target Year	Regulated metric	Unadjusted Fleet Target/Measure	Form of target curve	Test Cycle
EU	2015 2021	CO ₂	130 gCO ₂ /km 95 gCO ₂ /km	Weight-based	NEDC
China	2015 2020	Fuel consumption	6.9 L/100km 5 L/100km	Weight-class based	NEDC
U.S.	2016 2025	Fuel economy/ GHG	36.2 mpg or 225 gCO ₂ /mi 56.2 mpg or 143 gCO ₂ /mi	Footprint-based	U.S. combined
Canada	2016 2025	GHG	217 gCO ₂ /mi N/A	Footprint-based	U.S. combined
Japan	2015 2020	Fuel economy	16.8 km/L 20.3 km/L	Weight-class based	JC08
Brazil	2017	Fuel consumption	1.82 MJ/km	Weight-based	U.S. combined
India	2017 2022	CO ₂	130 g/km 113 g/km	Weight-based	NEDC for low- powered vehicle
South Korea	2015 2020	Fuel economy/GHG	17 km/L or 140 gCO ₂ /km 24 km/L or 97 gCO ₂ /km	Weight-based	U.S. combined
Mexico	2016	Fuel economy/GHG	39.3 mpg or 140 g/km	Footprint-based.	U.S. combined
Saudi Arabia	2020	Fuel economy	17 km/L	Footprint-based	U.S. combined

2. Form of target curve and underlying attribute

Country/ Region	Attribute		Form				
	Weight	Footprint	Class	Continuous	Bins		
European Union#	X			Х			
United States		Х	Х	Х			
Japan	X				Х		
China	X		Х		Х		
Canada		х	Х	Х			
South Korea*	X			х			
Mexico		Х	Х	Х			
India	X			Х			

© OECD/IEA 2018

Vehicle footprint (m²)

US fuel economy standard curves

3. Target timeframe / limit value

European Standards: CO₂ Emissions of Selected Vehicle Models by Technology (2013)

3. Target timeframe / limit value

China standards curves

Baseline analysis

Basic specifications: engine size, curb weight, footprint... Utility: power, max speed...

Fuel consumption, CO₂ emissions...

Technology adoption: fuel type, transmission, air intake...

Segment	Mini	Small	Lower medium	Medium	Large
Market share	6%	15%	32%	10%	4%
Representative model	Chery QQ3	BYD F3	Hyundai Elantra	Honda Accord	Audi A6
Diesel share	0%	0%	0%	0%	1%
Cylinder	3.5	3.9	4.0	4.1	5.0
Displacement [L]	1.1	1.4	1.6	2.0	2.4
Power [kW]	50	71	84	112	141
Auto. transmission share	17%	26%	44%	67%	89%
Curb weight [kg]	918	1080	1258	1464	1684
CO ₂ [g/km] (NEDC)	150	157	173	199	211

China 2010 passenger car data

Technology feasibility

Top runner (e.g. Japan)

Best available technology

Technology forcing

• Emerging off-the-shelf technology now; advanced technology later

Emission rates are test-cycle (not adjusted real world);

See CARB, 2010. http://www.arb.ca.gov/msprog/levprog/leviii/meetings/111610/ghg_11_10.pdf

Cost curve

Net cost: Investment cost Net benefit: Lifetime fuel cost saving Environmental benefit (climate change) Oil security

investment - NPV (lifetime fuel cost savings)

CO₂-abatement costs =

lifetime CO2-reduction

 CO_2 abatement of of 2015 EU regulation evaluation is: -101 EUR/t CO_2

Regulation evaluation: estimates vs. reality

- Fuel economy improvement is very cost effective; using social discount rates the GFEI targets are cost effective
- Strong fuel economy improvements will save enormous amounts of energy, CO₂ and fuel costs over the next 35 years
- Fuel economy could get us half way to a low carbon LDV system, but we will likely need PEVs and other solutions to get the rest of the way, especially after 2030.
- Enacting and progressively strengthening strong policies around the world will be the key

Fiscal policy type	Characteristics
Fuel taxes, CO2 taxes	Set by fuel type; paid upon refueling
VMT taxes	Typically paid at annual registration; could be CO2-adjusted
Road pricing	Paid by km of driving or when passing a cordon line
Vehicle purchase taxes/feebates	Paid at time of purchase; can be differentiated by fuel economy or CO2

- Encourage manufacturers to adopt technologies to improve fuel efficiency and reduce emissions
- Send consumers appropriate price signals to purchase fuel-efficient and low carbon vehicles
- Support fuel efficiency and emission regulatory targets
 - Regulatory standards set the minimum requirement and need to be strengthened overtime
 - Fiscal policies provide continuous incentive to improve
 - Easy to establish, does not require detailed knowledge of vehicles and technology costs, only needs to establish "rate, or value of fuel or GHG savings", "revenue target", and "test method and enforcement"

- Encourage manufacturers to adopt technologies to improve fuel efficiency and reduce emissions
- Send consumers appropriate price signals to purchase fuel-efficient and low carbon vehicles
- Support fuel efficiency and emission regulatory targets
 - Regulatory standards set the minimum requirement and need to be strengthened overtime
 - Fiscal policies provide continuous incentive to improve
 - Easy to establish, does not require detailed knowledge of vehicles and technology costs, only needs to establish "rate, or value of fuel or GHG savings", "revenue target", and "test method and enforcement"

Feebate = Fee + Rebate

- Market-based policy that shifts consumer purchases (and potentially manufacturer production) by encouraging GHG reductions by placing a fee on higher-emitting vehicles and providing a rebate to lower-emitting vehicles
- Based on fuel economy or CO2 differential between vehicles
- Could also take into account vehicle attributes like size or weight

How to design a feebate system

• Base fiscal charges directly on vehicle fuel consumption levels, instead of vehicle physical attribute, avoid fixed charges.

Mandatory labeling for fuel consumption is an enabler.

- Apply the incentive widely across fleet, instead of limiting to a portion of the fleet.
- Provide continuous incentive on every fuel consumption or fuel consumption level.
- Targeted incentive programs should also be linked to fuel consumption.

A targeted incentive program refers to incentive provided to vehicles with special features (such as a certain fuel type, or vehicles equipped with certain technologies).

Important to have a continuous slope, no steps

The only vehicles that receive rebates have CO_2 emissions of 60 g/km or less

The only vehicles that receive rebates have CO_2 emissions of 60 g/km or less

The French feebate schedule over time

The fees have risen and the rebates declined...

The French feebate system led to drop in CO₂ emissions

- 2001–2007 avg. reduction new vehicle $CO_2 = 1$ g/km per year
- 2008: emissions drop 9 g/km and 2009 by 7 g/km, The Ministry of Transport attributes this to introduction of the bonus/malus system

Source: Les véhicules particuliers en France (Ademe), March 2011

Standards	Feebates		
"Guarantee" a minimum level of fuel economy	Do not guarantee level		
No incentive to go beyond minimum	On-going incentive		
Must be regularly updated to maintain pressure	Must be regularly updated to meet revenue targets		
No cap on costs	Provide a cap on cost		
Could ban some vehicles	Wouldn't ban any vehicles		
No clear price signals	Clear price signals to consumers and producers		

www.iea.org #energyefficientworld