Technology demonstration and dissemination approach to achieve GHG reduction among SMEs

Energy Efficiency Training Week for India

Prosanto Pal The Energy and Resources Institute (TERI)

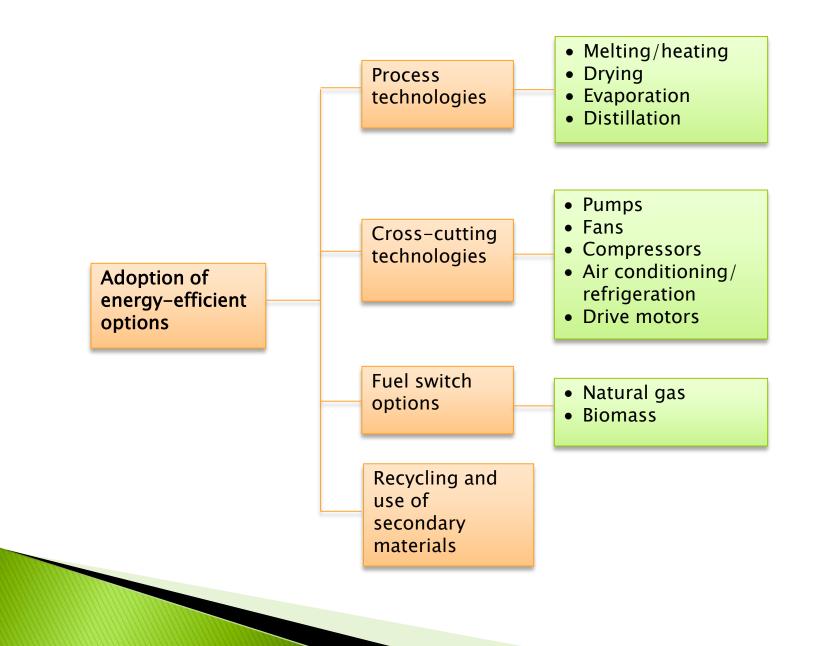
11 December 2018

Focus of the presentation

- Different levels (L 1, 2, 3) of energy efficiency improvement in industry
- Types of EE technologies: pre-commercial/semi-commercial and commercial technologies
- Different approaches to achieve energy savings/CO2 reduction among SMEs
 - > Deep dive approach
 - RDD&D (Research, Development, Demonstration & Diffusion) approach

Why energy efficiency

- Improving energy efficiency is the cheapest and most effective means to mitigating climate change
- According to the IEA, improving energy efficiency must account for more than 50% of the measures needed to win the battle against global warming


Energy efficiency is the cheapest

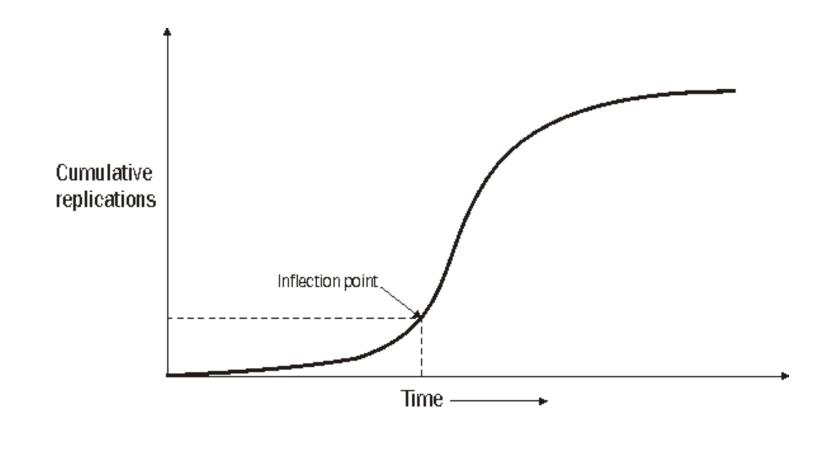
Energy efficiency improvements required capital investment or manpower or both

• Payback period $= \frac{\text{Capital required}}{\text{Annual savings}}$

Option	Payback period
Solar	7 years
Wind power	10 years
Energy efficient technologies	< 2 years

Characteristics of SMEs in India

- Individually small in size but large in number
- Geographically clustered
- Use low efficiency conventional technologies which have remained unchanged for decades
- Little R&D efforts
 - Underdeveloped support institutions and local service providers
 - Limited capacity to innovate



Approaches to improve energy efficiency

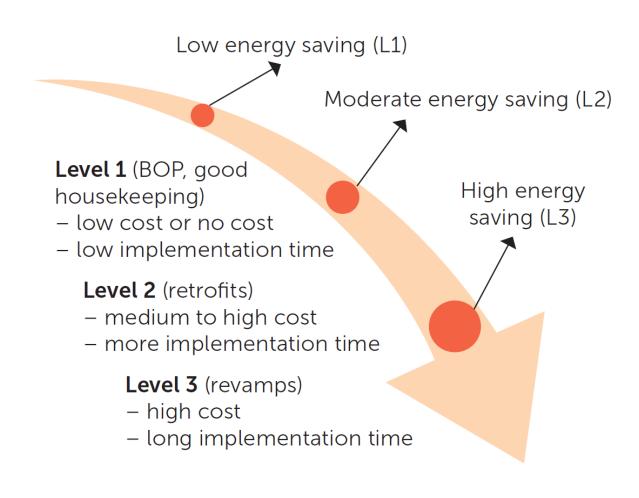
- Training/awareness creation
- Energy audits <u>and</u> implementation support for EE technologies and practices
- Fechnology demonstration
- Policies (financial concessions, regulation etc)

EE technologies are at different stages

EE technologies are at different stages

<u>Commercial y available technologies</u>

- > Already available in the market, but yet to be widely replicated
- Slower adoption either either due to low awareness or higher cost
- Awareness generation, energy audits <u>and</u> implementation support and concessional finance will help



Deep dive approach at cluster level

- A cluster level intervention aimed at detailed energy audits <u>and</u> technical assistance during implementation
- The approach helps to capitalising on energy efficiency improvements at <u>different levels</u> within an industry

Energy savings at different levels

Energy savings at L1

Energy inefficient operating practice: large sized raw materials charged into induction furnaces

Energy savings at L2

Lid mechanism installed for induction furnace

Energy savings at L3

Replacing reciprocating air compressor (L) with VFD-based screw air compressor (R)

Actual results from a deep dive intervention in a SME cluster

- Cluster: Rajkot Foundry Cluster (Gujarat)
- Period: 3 years (2015–17)
- > No. of units covered: 110
- Strategy
- Project office established. Vendors were identified and recommended
- Results

- > All 110 units fully or partly implemented EE recommendations
- Fotal of 757 EE recommendations implemented
- Annual energy savings 1,409 toe or CO2 reductions of 12,700 tonnes achieved

Pre-commercial/ Semi-commercial technologies

- > Technology not available off-the-shelf/too expensive
- <u>Technology demonstration (blackbox</u> <u>approach)</u> OR <u>Technological capacity</u> <u>building through Research, Development,</u> <u>Demonstration and Dissemination (RDD&D</u> <u>approach)</u>

Technology Demonstration

- Electric Heat Pump (EHP), a EE technology which results in 30-40% energy savings
- Useful to preheating of boiler feed water and precooling of process chilled water
- > Dairy, food processing, pharmaceutical, commercial buildings
- > Pilot plants installed in 2 dairies in India
- Energy savings 30–40%

Technological capacity building

RDD&D – creating the ripples

Designing of a RDD&D initiative on Energy Efficient (EE) technologies

- Identify an energy intensive process/sector
- Collaborate with experts (both international and local) to develop/modify (R&D) a cleaner technology as per local needs for the sector
- > Demonstrate technologies as per local needs
- Disseminate the demonstrated technology by building local capacities of service providers/users

Background

- Glass making is very energy intensive – energy accounts for 40% of manufacturing cost
- Considerable potential to reduce energy consumption and carbon emissions by adoption of energy efficient furnaces

Approach

- Involved international and local experts to develop (conduct R&D) on:
 - Better furnace construction
 - Burner design
 - Recuperator design
- Demonstrated the energy efficient furnace in one SME

Energy savings of 30-35% demonstrated

Conventional coal/NG fired Pot Furnace

Recuperative Natural Gas fired Pot Furnace

Disseminate

- Local service providers provided training
- > Deployment
 - 86 units have adopted the new technology; about 90% of the cluster
 - Cumulative energy savings of 100,000 toe and CO2 savings of 300,000 tones

Thank you for your attention

