

Toolkit:

Energy-efficient municipal planning

Municipal and Utility Services: Session 3 John Dulac, Deepak Krishnan & Kajol New Delhi, 11 December 2018

Energy Efficiency Training Week: Municipal and Utility Services

- 1. Where to start: Energy use in municipalities
- 2. Where to start: Energy efficiency potential in municipalities
- 3. Toolkit: Energy efficient municipal planning
- Toolkit: Energy efficient technologies
 Where do I get help? IEA's Technology Collaboration Programmes
- 5. What are the steps: Implementing energy efficiency programmes target setting
- 6. What are the steps: Implementing energy efficiency programmes implementation
- 7. What are the steps: Enable public energy efficiency investment
- 8. What are the steps: Enable private energy efficiency investment Special session: Multiple benefits of energy efficiency for Municipalities
- Did it work: Evaluation and energy efficiency indicators
 Special session: International and regional initiatives that can help
- 10. Energy Efficiency Quiz: Understanding energy efficiency in municipal services & utilities

Energy Efficiency Training Week: Municipal and Utility Services

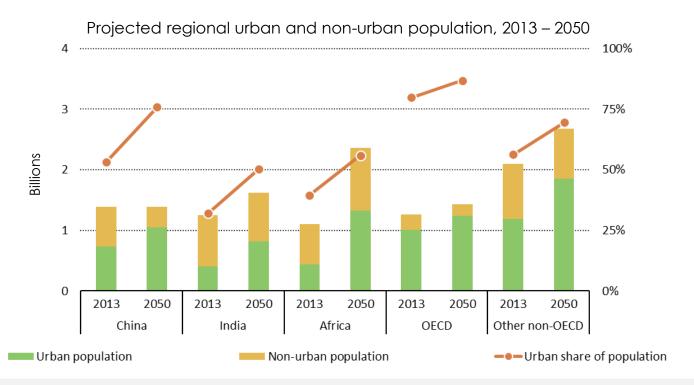
3. Toolkit: Energy-efficient municipal planning

Trainer(s): John Dulac

Purpose: To teach the fundamentals of how urban planning and policy can be used to reduce energy use in municipalities and in related municipal services.

Scenario: Your municipality is growing quickly and so is demand for municipal services.

Question: How can we design a more energy-efficient municipality?


Energy-efficient municipal planning

Trends in urbanisation

An energy efficient urban system

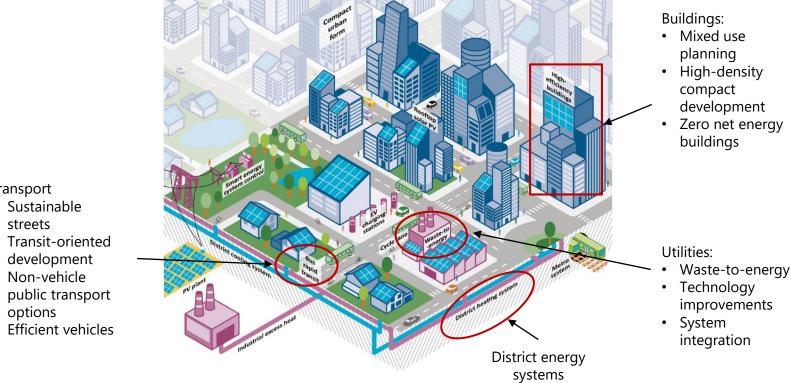
Energy-efficient municipal planning: Trends in urbanisation

By 2050, two-thirds of the world's population will live in urban areas, with the greatest growth in China, India, Africa, and non-OECD economies in other regions

Source: ETP 2016

Energy-efficient municipal planning: an energy-efficient urban system

Transport Sustainable streets Transit-oriented


development

Non-vehicle

options

What is typically happening in cities with respect to energy consumption? What does an energy-efficient urban system look like?

Source: ETP 2016 © OECD/IEA 2018

Municipal Buildings

Zoning and land-use

Building services

Towards net-zero energy buildings

Municipal buildings: zoning and land-use

Zoning can regulate the use of land in a particular area, and takes into consideration mixed-use planning and high density compact urban development

A mixed use development in a downtown neighbourhood in Pittsburgh, PA, USA

Municipal buildings: zoning and land-use

Energy efficiency opportunities:

- Non-vehicle transport modes
- Less frequent, long-distance travel
- Alternative technologies for energy supply
 - e.g. district energy systems

Source: http://www.sicomindia.com/blog/105-smart-cities-to-accelerate-growth-in-india-efficient-sustainable-utopian

Municipal buildings: zoning and land-use

Urban policy options – zoning bylaws and development regulations for:

- Smart growth development patterns
- Preventing strip development
- Energy-related site development standards
- Building energy standards
- Incentives for renewable energy generation
- Avoiding barriers to renewable energy facilities that are subject to local zoning
- Development standards to address transportation efficiency

- Municipalities generally have high control over their municipal buildings
- Building services include:
 - Light bulb replacement
 - Water pumps
 - Fixing dripping faucets and leakages (+ efficient taps)
 - Repairing windows and doors
 - Chiller and boiler maintenance

 This gives them a significant opportunity to improve energy efficiency and reduce carbon emissions.

Energy efficiency opportunities:

Schools and	Retrofitting to efficient lighting
hospitals	EE improvement of building fabric
	Upgrades to efficient heating/hot water systems, water pumps & faucets, etc.
	EE best practices of facility equipment
Public housing	EE upgrades for existing public housing, e.g. compliant lamps
	EE features for new public homes: e.g. effective insulation

Electrical installations in schools, before and after:

Lighting retrofits in schools, before and after:

"In emerging economies such as India, where 70-80% of the 2030 built environment has yet to be constructed, there is tremendous potential to implement best-in-class building practices in current new construction in order to avoid "locking in" decades of inefficiency and more costly renovations later"

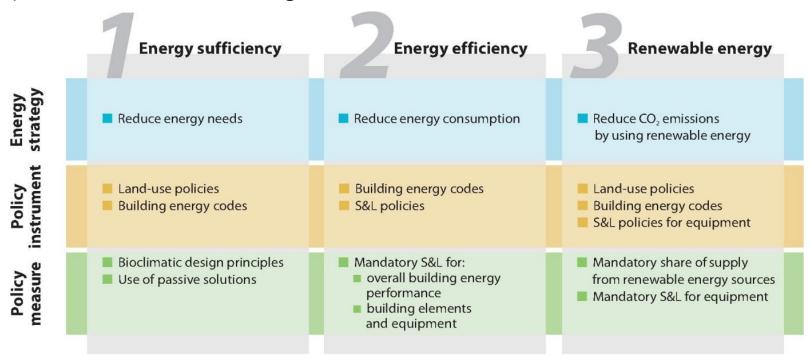
— World Resources Institute ¹

Urban policies can enable:

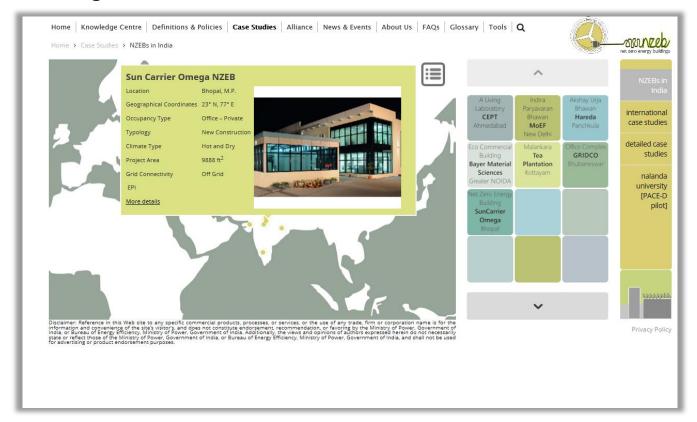
- Building efficiency codes and standards
- Efficiency improvement targets
- Performance information and certifications
- Incentives and finance

Municipal buildings: towards net-zero energy buildings

Energy Saving Opportunities:


- Building envelope design
- Heat storage system
- Lighting design
- Efficient equipment

Municipal buildings: towards net-zero energy buildings


The path to net zero buildings:

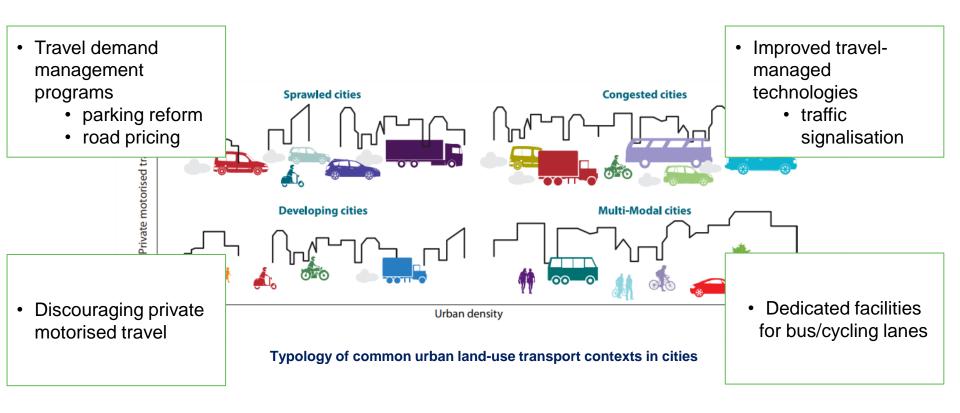
Municipal buildings: towards net-zero energy buildings

Net zero buildings in India:

Transport

Land use and transit-oriented development

Sustainable Streets


Public transport services

"Avoid-Shift-Improve" Framework

Strategies for action

Transport: land use and transit-oriented development

Transport: sustainable streets

From this...

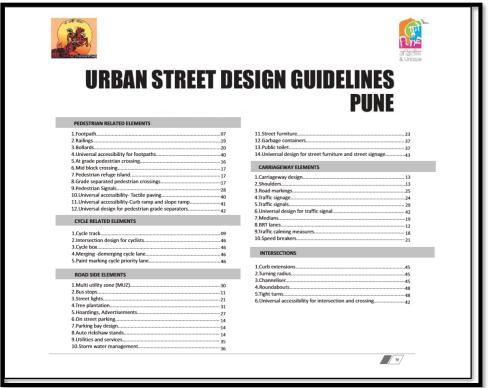
... to this

This features more elements of **non-vehicle oriented street design**, building compact and **well-connected urban areas** with **dense networks** of streets and paths

Transport: sustainable streets

Energy efficiency opportunities:

- bus-only lanes,
- sheltered bicycle lanes,
- median traffic islands for pedestrian crossing and reduced curbside parking


Sustainable streets in NYC

Transport: sustainable streets

Urban policies that enable sustainable streets include the development of **urban planning and street design guidelines**, e.g. City of Pune

Transport: public transport services

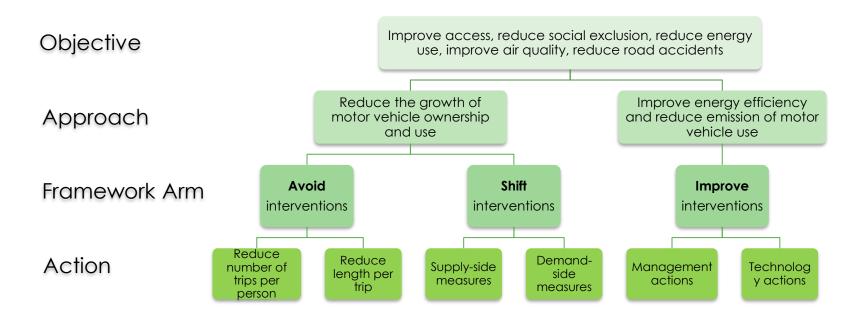
Towards efficient public transport options:

Public bike-share systems

Electric mobility is not limited to cars

Public transit

connections


Enabling policies effect:

- Targets to phase in zero-emission vehicles
- **Public procurement programmes** for zero-emission public vehicles
- Fuel economy standards
- Increased **funding streams** for public transport services
- Incentive provision to increase public transport uptake

Transport: "Avoid-Shift-Improve" Framework

Municipalities can encourage an **integrated approach** to sustainable urban mobility that encompasses 'avoid', 'shift' and 'improve' actions:

Transport: "Avoid-Shift-Improve" Framework

	AVOID	SHIFT	IMPROVE
EE OPPORTUNITIES	 Access and proximity to transit Pedestrian, bicycle and transit-friendly design 	 Car pooling options Non-motorised transport 	Energy-efficient vehicles and technologies
POLICY RESPONSE	 Information tools to raise awareness of real travel costs Promotion of carpooling Parking standards and fees/levies 	 Improved bus routes and services Pricing strategies Road space allocation Size & weight standards of vehicles 	 Vehicle standards Speed limits Subsidies for alternative fuels Vehicle fuel-economy/environment performance labelling

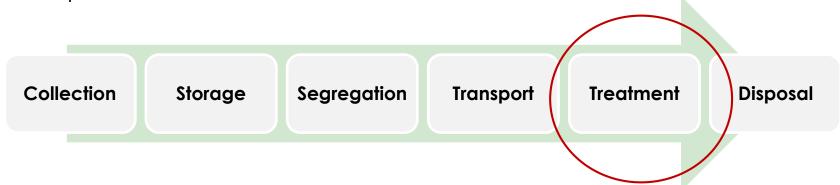
Transport: Strategies for action

IEA policy pathway:

	Identify transport needs and define objectives	
PLAN	2 Identify and engage stakeholders early on	
PLAN	Address potential barriers and secure necessary resources	
	Establish policy framework and action plan	
	5 Engage actors and begin implementation	
IMPLEMENT	Raise awareness and communicate targets	
	Manage implementation process	
MONITOR	8 Collect, review and disseminate data	
FVALUATE	Analyse data and evaluate effects of transport policy	
EVALUATE	Adapt transport policy and plan next steps	

Solid Waste Management

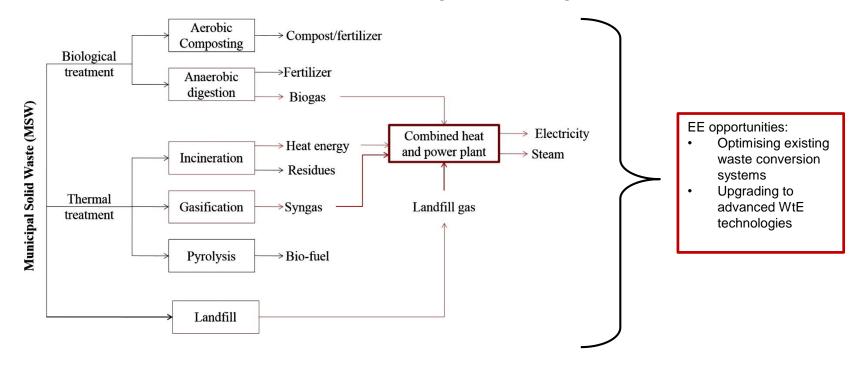
The solid waste management process


Waste-to-energy services

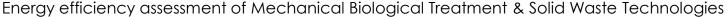
Solid waste management: the solid waste management process

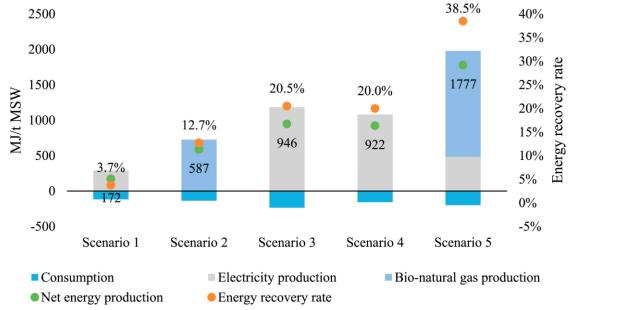
- In India, solid waste management is primarily the responsibility and duty of municipal authorities
- Sources of waste:
 - Municipal
 - Private sector

Municipal solid waste services:



Solid waste management: waste-to-energy services


Energy efficiency opportunities:


- Efficiency improvements of waste-to-energy technologies and systems

Solid waste management: waste-to-energy services

Implementing and using Mechanical Biological Treatment (MBT) systems in conjunction with mainstream Solid Waste treatment technologies can deliver greater energy efficiency overall

Solid waste management: waste-to-energy services

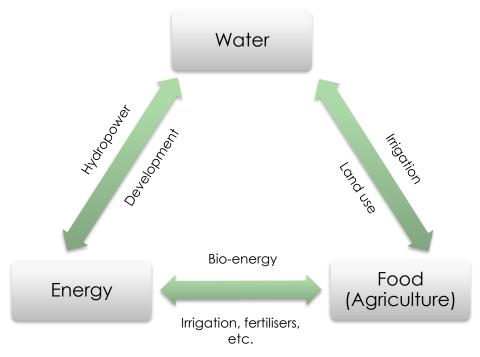
Enabling policies for energy efficiency in solid waste management:

- Policies that promote the implementation of Waste-to-Energy technologies, resource efficiency and integration solutions:
 - Provision of **public investment and infrastructure** for integration solutions
 - Incentives for the uptake of efficient technologies and efficiency improvements
 - **Subsidies** for adoption of efficient technologies

Water and Sewage

Opportunities for energy efficiency

The water energy nexus


Water and Sewage: opportunities for energy efficiency

- EE benefits for water and wastewater utilities:
 - Reduced costs of energy
 - Life extension of infrastructure and equipment
 - Job creation
 - Public **health benefits**
 - Improved water and energy security
- EE opportunities in Water and Sewage:
 - Overall efficiency improvements in drinking water and wastewater systems
 - Water-energy nexus opportunities, that arise from energy and water system integration

Water and energy are **inextricably linked**: water use requires energy, and energy production requires water. These resources further have intricate ties to agriculture

Water-energy nexus challenges for India:

- Water-scarce and water stressed country
- Water constraints affecting energy security
 - Population growth
 - Economic development
 - Resource use inefficiencies
- Water and energy's importance for food security

Large swathes of the Yamuna on the Dehli-Haranya border are running dry.

Source: https://indianexpress.com/article/cities/delhi/situation-hasnt-been-this-bad-since-1988-at-mouth-of-capital-the-yamuna-runs-dry-5117856/

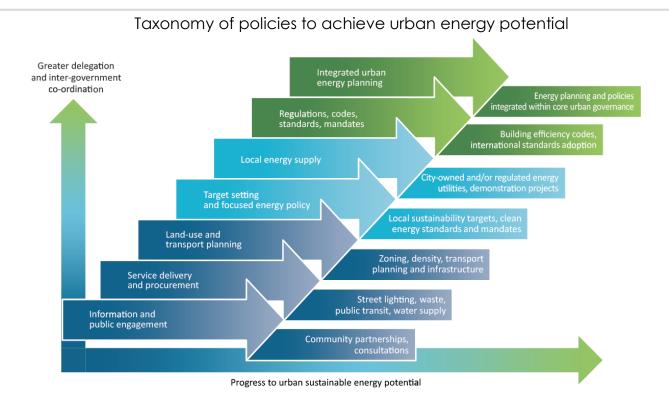
Water-energy nexus opportunities for energy efficiency synergies:

- Technology mix prospects:
 - Less water intensive energy systems
 - Different **production processes** for energy within a resource base
- Co-production of water and energy services:
 - Energy recovery from wastewater
 - Cogeneration
 - Heat recycling

- Urban policies that enable energy efficiency improvements include those that:
 - Encourage water-energy synergies and integrated solutions
 - Support utilities efforts of energy efficiency measures
 - Develop multi-sector environment and energy
 programs in which EE efforts at water/wastewater
 facilities compose one element
- Local partnerships to take advantage of existing opportunities

Barriers for energy efficiency in municipal services

Barriers for energy efficiency in municipal services


Barrier	Example
Market	 Market organisation and price distortions Split incentive problems Transaction costs
Financial	 Up-front costs and dispersed benefits Perception of EE investments as complicated and risky, Perception of projects having high transaction costs Lack of awareness of financial benefits
Information and Awareness	Lack of sufficient information and understanding
Regulatory and Institutional	 Energy tariffs that discourage EE investment Incentive structures not conducive to energy efficiency Institutional bias towards supply-side investments
Technical	 Lack of affordable technologies that are energy efficiency Insufficient capacity

Governance and Action

Governance and action

Increased ambition to achieve the urban sustainable energy transition will require greater need for intergovernmental co-ordination and delegation

Additional Resources

World Bank - Energy Efficient Cities: Assessment Tools and Benchmarking Practices

http://www.esmap.org/sites/esmap.org/files/P115793_Energy%20Efficient%20Cities-Assessment%20Tools%20and%20Benchmarking%20Practices_Bose.pdf

C40 Municipal Building Efficiency (MBE) Network

https://www.c40.org/networks/municipal-building-efficiency

Building Efficiency Accelerator

http://buildingefficiencyaccelerator.org/

District Energy in Cities Initiative

http://www.districtenergyinitiative.org/

NZEB Alliance India

http://www.nzeb.in/

Activity

Activity: Ideas for energy efficiency initiatives

- 1. Break into groups, ideally 3-4 people per group
- Each group should be assigned to a service/sector Municipal Buildings, Street Lighting, Transport, Solid Waste Management, Water & Sanitation, and District Energy
- 3. Each group should:
 - As individuals within the group, get 5 post-its and come up with 5 different initiatives for furthering EE urban development in India as it relates to your service/sector. 1 idea per post-it
 - Cluster the ideas together in your group and combine common ideas where necessary
 - Pick the top 3 ideas to take back to the larger group
- 4. All groups together:
 - Share your top 3 ideas and share what the key enablers are for each of them.

www.iea.org

