
Integrating variable renewables: Implications for energy resilience

Peerapat Vithaya, Energy Analyst – System Integration of Renewables

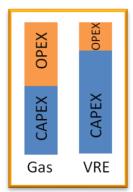
Enhancing Energy Sector Climate Resilience in Asia Asia Clean Energy Forum 2017, Manila, 6 June 2017

The growth of wind and solar in Asia

Wind and solar power have grown almost 10 times faster than demand. System integration requires attention as the grow continues

Most relevant properties of variable renewables

Variability


Uncertainty


Non-synchronous technologies

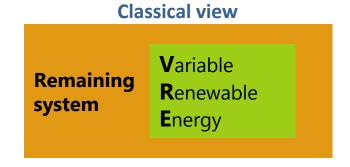
Low short-term marginal cost

Modularity

Location constraint

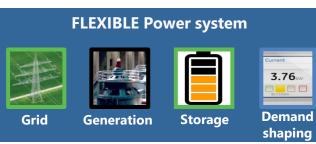
Variable renewables and energy resilience

1. Benefits

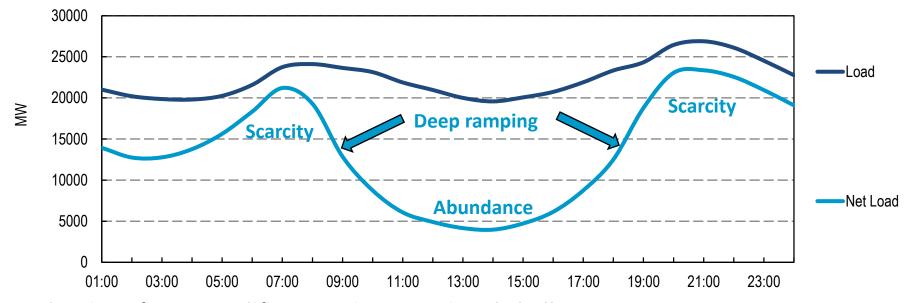

Climate change mitigation, fuel diversifications, reducing fossil-fuel import

2. Challenges

- Variability and uncertainty
- Energy security implications at high shares if system integration challenges are not addressed

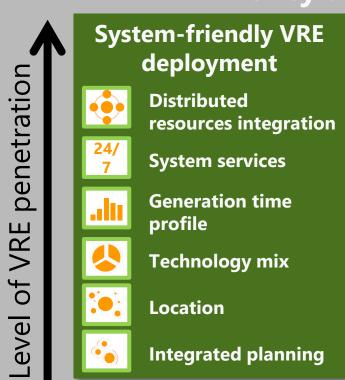

3. System Transformation

- To achieve secure and resilient energy



Coordinated view

Impact of wind and solar on net demand



- The rise of VRE amplifies certain operational challenges
 - Abundance: high VRE output decreases the net load and may reduce output of conventional power plants
 - **Scarcity**: potentially low contribution during hours of peak demand
 - **Deep ramping**: enhanced need for reliable flexibility options during peak periods

System transformation

Policy and market framework

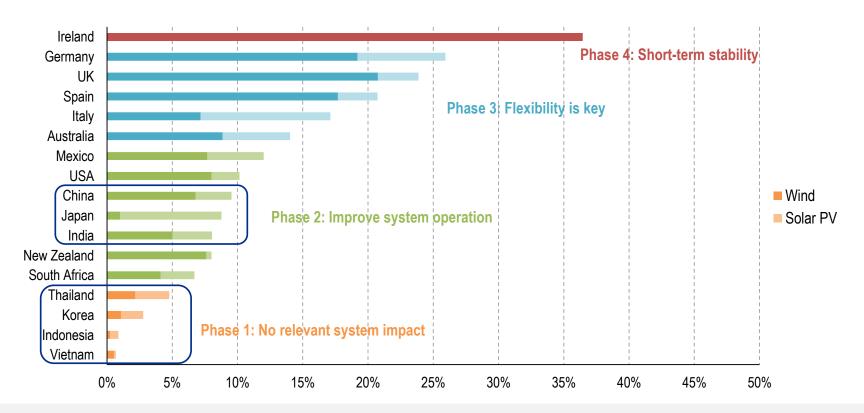
Actions targeting VRE

System and market operation

Actions targeting overall system

Transformation depends on context

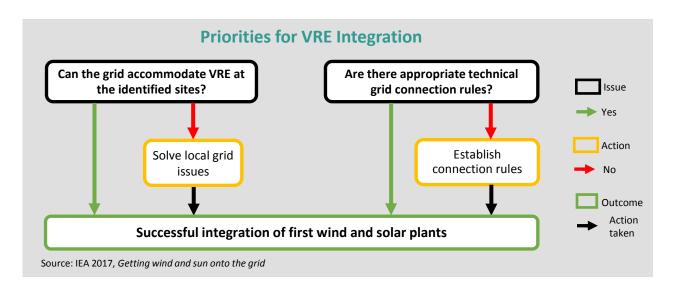
- → Maximise the contribution from existing <u>flexible</u> assets
- → Decommission or mothball <u>inflexible</u> polluting surplus capacity to foster system transformation

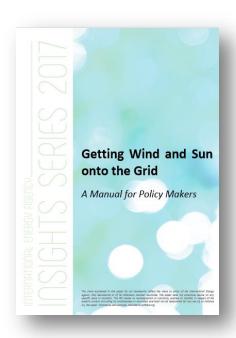

- → Implement <u>holistic</u>, <u>long-term</u> transformation from onset
- → Use proper long-term <u>planning</u> <u>instruments</u> to capture VRE's contribution at system level

^{*} Compound annual average growth rate 2012-20, slow <2%, dynamic ≥2%; region average used where country data unavailable

This map is without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.

Policy guidance for different phases of system integration



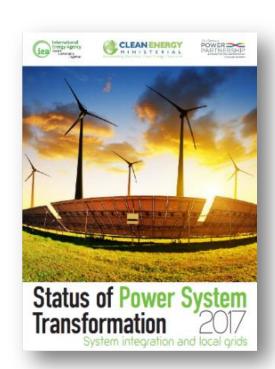

Integration strategies differ by phase of VRE deployment. Phases one and two currently most relevant for majority of countries.

Priority during the early phase of VRE deployment

- VRE output is not noticeable for system operator
- VRE variability is negligible compared to fluctuations in demand
- Priority areas are connection requirements and grid codes

At initial deployment, integration of VRE technologies requires very little effort

Addressing operation challenges


Technical measures

- Address system reliability issues arising from VRE
- Some measures can also improve the cost-effectiveness of power system operation
- E.g. real-time monitoring and control, power plant flexibility, enhancing line capacity

Economic measures

- Improve the cost-effectiveness of power system operation
- Without economic measures, the grid can still operate in a reliable manner (but more costly)
- E.g. better forecasting, reduce dispatch interval, include VRE in the dispatch
- A range of measures to maintain reliability and costeffectiveness
- Different measures are needed for different phases of VRE deployment
- Grid code is important for successful integration

Key action areas and policy examples

Action area

Integrated planning: wind and solar embedded in energy strategy

Policy example

Denmark: integrated energy strategy

Location: siting VRE closer to existing network capacity and/or load centers

Location: new auction design for wind and PV

Technology mix: balanced mix of VRE resources can foster lasting synergies

Technology mix: Integrated Resource Plan

Optimising generation time profile: design of wind and solar PV plants

California: incentive to produce at peak times

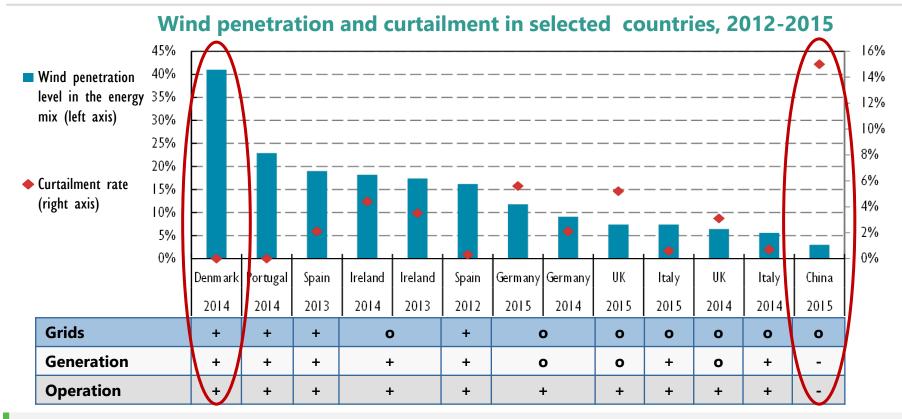
System services: wind and sun contribute to balance system

System services: wind active on balancing market

Local integration with other resources such as demand-side response, storage

Australia: incentives for self-consumption

Conclusion

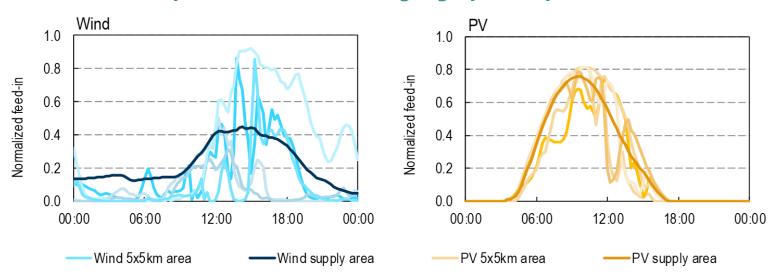

- Variable renewables can enhance energy system resilience
 - Fuel diversity, environment benefits, long-term security
- It is technically possible and economically feasible to integrate high shares of wind and solar despite their variability and uncertainty
- Integration of high shares in a cost-effective and reliable manner requires changes to the power system
 - Operation practices
 - Planning practices
 - Policy, market and regulatory frameworks

Additional Slides

... but also challenges

Curtailment levels are a good indicator for successful VRE integration – growing curtailment signals shortfalls in power system flexibility

Recent renewable integration milestones...



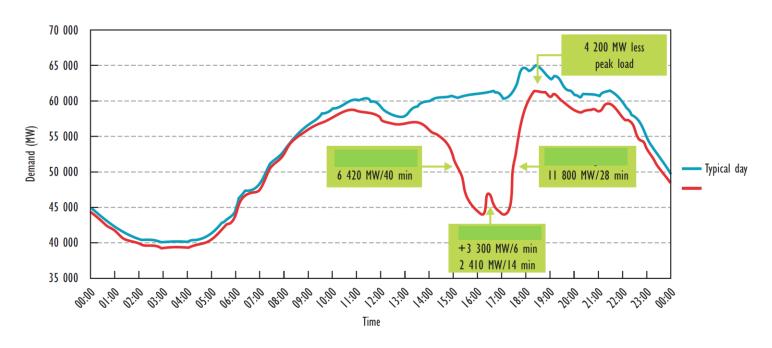
Scotland, 14 August 2016: Daily wind Denmark, 2 September 2015: The power production exceeded Western Danish power **system runs** demand without centralised power **generation** for the first time Germany, 8 May 2016: Wind and **solar PV** cover the equivalent of approx. 75% of power demand **Portugal**, 7-11 May 2016: **Renewable energy** (including hydro) covers the equivalent of 100% of power demand for 107 consecutive hours **Spain**, 28 February 2016: For the first time, wind power provides upward balancing reserves

Example: Geographical spread of VRE

VRE output and the benefit of geographical spread, South Africa

The dispersal of VRE power plants makes their output easier to accommodate. REDZ are a good starting point for the larger implementation of VRE in South Africa.

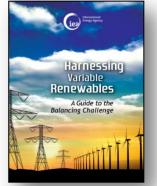
Phases of VRE system integration



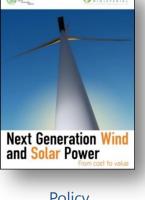
Phase	Description
1	VRE capacity is not relevant at the all-system level
2	VRE capacity becomes noticeable to the system operator
3	Flexibility becomes relevant with greater swings in the supply/demand balance
4	Stability becomes relevant. VRE capacity covers nearly 100% of demand at certain times
5	Structural surpluses emerge; electrification of other sectors becomes relevant
6	Bridging seasonal deficit periods and supplying non-electricity applications; seasonal storage and synthetic fuels

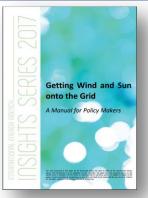
Variability – a familiar challenge

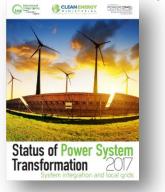
Exceptionally high variability in Brazil, 28 June 2010


Power systems already deal with demand variability; they have flexibility available from the start.

IEA System Integration of Renewables analysis at a glance



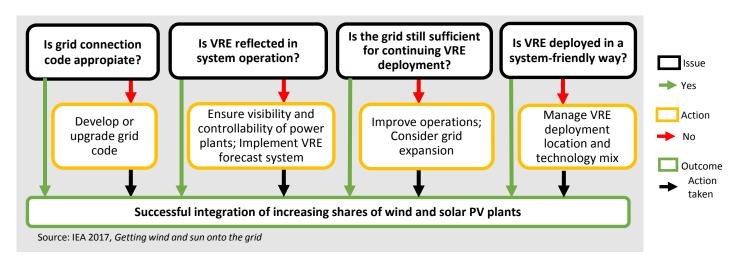

- Formally established as a Unit on 1 June 2016 build on GIVAR work
- Global expert network covering policy making, engineering and modelling
- Analysis based on extensive research on current global state of play and modelling tools
- Fostering exchange in international fora (G20, CEM) and capacity building


2016 2011 2014 2017 2017 CLEAN ENERG iea itergy Ages

Power **Transformation**

Technical

Framework, Technology, **Economics**


Policy

Implementation

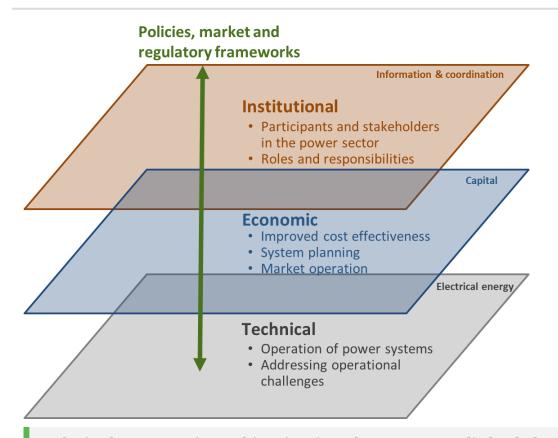
Progress & Tracking

Priority during the early phase of VRE deployment

Phase 2 of VRE integration

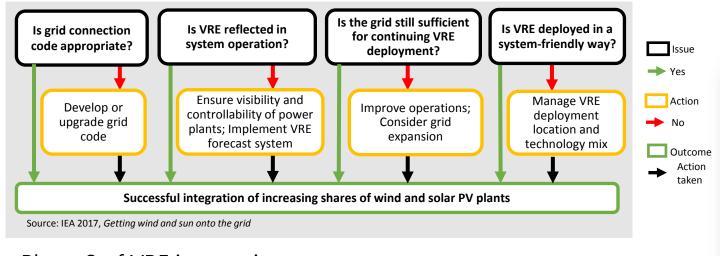
- First instances of grid congestion
- Incorporate VRE forecast in scheduling and dispatch
- Focus on system-friendly VRE deployment

The level of adaptation needed to integrate VRE changes according to the level of penetration


Options for addressing power system operation challenges

	Measures	Phase 1	Phase 2	Phase 3	Phase 4
Technical	Real-time monitoring and control				
	Enhancing capacity of transmission lines				
	Power plant flexibility				
	Special protection scheme				
	Advanced VRE technologies and design				
	System non-synchronous (SNSP) limit				
	Smart inverter				
	Advanced pump hydro operation				
	Inertia-based fast frequency response (IBFFR)				
	Grid level storage				
Economic	Sophisticated sizing of operating reserves				
	Integrating forecasting into system operations				
	Faster scheduling and dispatch				
	Incorporating VRE in the dispatch				
	Coordination across balancing areas				

System transformation for VRE integration


- Institutional different stake holders involved; increased cooperation is key
- Economic system planning; market operations
- Technical operations of power systems

Technical, economic and institutional aspects are linked through policies, markets and regulatory frameworks

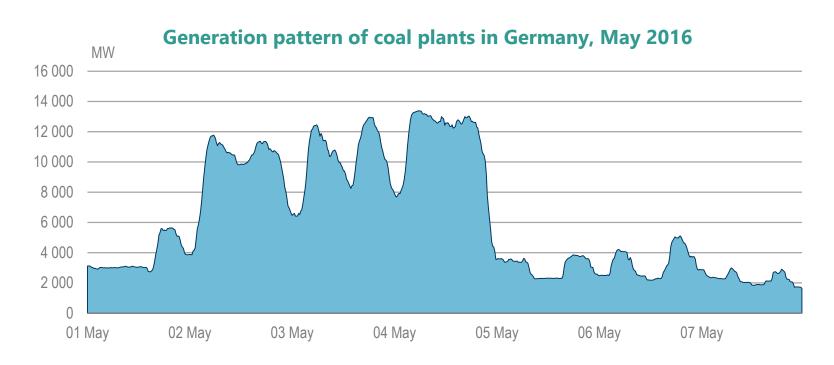
Policy implementation

Getting Wind and Solar onto the Grid – A Manual for Policy Makers

Phase 2 of VRE integration

- First instances of grid congestion
- Incorporate VRE forecast in scheduling and dispatch
- Focus on system-friendly VRE deployment

March 2017 Getting Wind and Sun onto the Grid A Manual for Policy Makers


New Publication released

The level of adaptation needed to integrate VRE changes according to the level of penetration

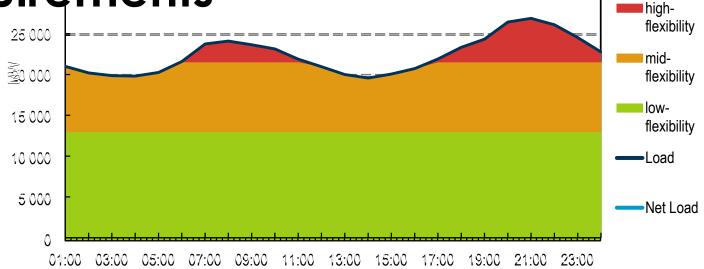
Example of technical measures – Power plant flexibility

- Power plants are an important source of flexibility
 - evident in countries such as Germany, Denmark, Spain, the United states

Power system transformation assessment framework

Aspect	Sub-aspects		
Maykata and anavations	Wholesale level		
Markets and operations	Retail level		
Planning and	Integrated planning frameworks		
infrastructure	Electricity grids		
	Smart technologies		
Uptake of innovative technology	Flexible resources		
33	Resource-efficient technologies		
Efficiency and sector	Electrification of other sectors		
coupling	Energy efficiency		

Grid code is important for VRE integration



	Always	Phase One	Phase Two	Phase Three	Phase Four
Typical technical requirements	 protection systems power quality frequency and voltage ranges of operation visibility and control of large generators communication systems for larger generators 	 output reduction during high frequency events voltage control FRT capability for large units 	 FRT capability for smaller (distributed) units communication systems VRE forecasting tools 	 Frequency regulation reduced output operation mode for reserve provision 	 integration of general frequency and voltage control schemes synthetic inertia stand-alone frequency and voltage control

- Need to ensure the grid code is appropriate for VRE
- Prioritising technical requirements according to the share of VRE
- Need to be in the context of individual power system

Decrease baseload

requirements

•

•