IEA Regulatory Network meeting – CCS
22-23 April 2015

Ana Picado (ana.picado@lneg.pt)
Portugal’s contribution to the 4th edition of the CCS Legal and Regulatory Review:

- Transposed the EU directive and was considering some further activities focused around CO₂ storage.

Portugal’s approach

- The Directive is transposed into Portuguese law DL 60/2012 (2009/31/EC on the geological storage of carbon dioxide) - DGE
- CCS is not considered as policy priority
- Some activity is running
CCS-PT: Perspectives for capture and sequestration of CO₂ in Portugal to initiate the debate about the role of carbon capture and storage technology in the country.

Study on CCS aiming to set up the Pt roadmap on CCS.
Table of Contents

4 Preface
5 Executive Summary
 1. Portuguese energy consumption and CO₂ emissions at a glance
 1.1 The energy system and industry: profile and future perspectives
 1.2 Greenhouse gas emissions: current and future outlook
 1.3 Why CCS in Portugal?
2. Paths to a low-carbon economy
 14 2.1 CO₂ storage
 18 2.2 Low carbon scenarios
 20 2.3 The Role of CCS in the transition to a low carbon economy
 24 2.4 Costs and benefits of CCS deployment
 26 2.5 Negative Emissions from Biomass
3. Challenges and Opportunities of CCS deployment
 28 3.1 Business opportunities and synergies with economic activities
 31 3.2 Options for transport and storage
 34 3.3 Managing CCS challenges
 35 3.4 Stakeholders Engagement/Expectations
4. Recommendations/Actions to CCS deployment
 38 References

More information on CCS-PT is available on http://ccsroadmap.pt
Potential locations to CO₂ storage identified:

- Porto Basin (offshore)
- Lusitaniana Basin (offshore e onshore)
- Algarve Basin (offshore)

- 7.5 Gton CO₂ >95% offshore

<table>
<thead>
<tr>
<th>Basin</th>
<th>RESERVOIRS (Formações detríticas)</th>
<th>CAPACITY (Mton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porto</td>
<td>Torres Vedras (Cretaceous Inf.) Silves sandstone (Triassic)</td>
<td>2004</td>
</tr>
<tr>
<td>Lusitaniana</td>
<td>Torres Vedras Cretaceous Inf.) Silves sandstone (Triassic)</td>
<td>3888</td>
</tr>
<tr>
<td>Algarve</td>
<td>Sands of Miocene (Early Cretaceous)</td>
<td>1247</td>
</tr>
<tr>
<td></td>
<td>Σ = 7140</td>
<td></td>
</tr>
</tbody>
</table>
General aims of the workshop: present an overview of the current state-of-the-art technology in industrial CCS and to improve understanding to the different challenges in deploying CCS in the oil refining, chemical/petrochemical, and pulp and paper industries, exchange information / discuss different issues that could impact the development and future deployment of CCS in the different sectors.
LNEG and University of Evora in the JP

European Energy Research Alliance

LNEG and University of Evora
R&I priorities for CCS in Europe in order to achieve wide deployment by 2030
Former studies highlights:

The **National Low Carbon Roadmap 2050 (RNBC)** (July 2012) pointed to the adoption of CCS by some power plants and industries as a cost-effective option for the mitigation portfolio.

Findings in the **FP7 COMET project**:
- CCS will play an important role in reducing the national CO$_2$ emissions to the atmosphere, even under moderate mitigation targets (80% reduction in 2050, when compared to 1990 emissions level) capable of avoiding the emissions up to 3 Mt CO$_2$ to the atmosphere in 2030 and to 7 Mt CO$_2$ in 2050, mainly associated with **cement sector**;
- **Main corridors** defined for a transport net for CO$_2$, accounting for costs and land criteria;
- Study on transport and interconnected networks for CO$_2$ storage among Portugal, Spain and Morocco;
- Findings should consider a set of uncertainties, namely regarding the evolution of fossil fuel prices over the next decade, the projections of industrial production (both domestic consumption and exports), the availability of natural resources such as hydrological conditions;
- The performance and the expected costs for CCS in the future emerges as a major barrier to its deployment.