Climate Change Adaptation
System Resilience

Hani Taki
Manager, Standards & Policy Planning
Engineering & Construction

6th Forum on the Climate-Energy Security Nexus
June 7, 2016
Ottawa, Canada
- Population of 2.8 million
- Largest city in Canada
- Fourth largest city in North America
- Consistently ranked one of the world's most livable cities

Toronto has North America's largest continuous underground pedestrian system and shopping complex
WE OWN AND OPERATE $3.0 BILLION OF CAPITAL ASSETS

HEAD OFFICE
14 CARLTON STREET
TORONTO, ONTARIO
M5B 1K5

674,201 RESIDENTIAL CUSTOMERS

757,000 CUSTOMERS

81,492 GENERAL SERVICE CUSTOMERS WITH MONTHLY DEMAND OF 0-5000 KILOWATTS

44 LARGE USERS WITH MONTHLY DEMAND OVER 5000 KILOWATTS

1,480 EMPLOYEES
Toronto Hydro

Climate Change Adaptation – June 7, 2016

1 CONTROL CENTRE

15,560 KILOMETRES OF OVERHEAD WIRES

161 MUNICIPAL SUBSTATIONS

16,900 PRIMARY SWITCHES

60,440 DISTRIBUTION TRANSFORMERS

176,500 POLES

12,920 KILOMETRES OF UNDERGROUND WIRES

TORONTO HYDRO'S SERVICE AREA
Climate Change Adaptation

Vulnerability Assessment Phase 1
Vulnerability Assessment Phase 2
Roadmap Development
Roadmap Implementation

System Resilience Enhancements

2012 2013 2014 2015 2016 2017
Climate Change Adaptation

July 2013 – Extreme rainfall (126mm in 2 hrs)

325,000 customers impacted
Flooding of station control equipment

Vulnerability Assessment
Roadmap Development
Implementation

System Resilience Enhancements

July 2013

Extreme rainfall (126mm in 2 hrs)
325,000 customers impacted
Flooding of station control equipment

news.nationalpost.com
Climate Change Adaptation

December 2013 – Ice storm
300,000 customers impacted
Tree limbs falling on power lines
Climate Change Vulnerability Assessment

- Engineers Canada’s *Public Infrastructure Engineering Vulnerability Committee* (PIEVC) Engineering Protocol
- Consortium: AECOM, City of Toronto, Clean Air Partnership, Engineers Canada, Risk Sciences International…
- NRCan funding

<table>
<thead>
<tr>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pilot case study</td>
<td>• 2010-2050, 20 climate parameters</td>
</tr>
<tr>
<td>• Current climate only</td>
<td>• Entire distribution system</td>
</tr>
<tr>
<td>• Small portion of distribution system</td>
<td>• Completed June 2015</td>
</tr>
<tr>
<td>• Completed Sept 2012</td>
<td></td>
</tr>
</tbody>
</table>
Climate Parameters and Probability of Occurrence

<table>
<thead>
<tr>
<th>Climate Parameter</th>
<th>Annual Probability (Historical, Projected 2030’s and 2050’s)</th>
<th>Probability of Occurrence Study Period (2015-2050)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Maximum</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>66 per year; 84 per year, 106 per year</td>
<td>100%</td>
</tr>
<tr>
<td>30°C</td>
<td>16 per year, 26 per year, 47 per year</td>
<td>100%</td>
</tr>
<tr>
<td>High Daily Avg. Temperature</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>0.07 per year; N/A, 1.2 days per year</td>
<td>~100%</td>
</tr>
<tr>
<td>Heat Wave</td>
<td>0.88 per year; >1 for both</td>
<td>100%</td>
</tr>
<tr>
<td>High Nighttime</td>
<td>Nighttime low >23°C</td>
<td>0.70 per year, 7 per year, 16 per year</td>
</tr>
<tr>
<td>100 mm in <1 day + antecedent</td>
<td>0.04 per year; extreme precipitation expected ↑, percentage unknown</td>
<td></td>
</tr>
<tr>
<td>15 mm (tree branches)</td>
<td>0.11 per year; >0.13 per year, >0.16 per year</td>
<td></td>
</tr>
<tr>
<td>25 mm ≈ 12.5 mm radial</td>
<td>0.06 days per year; >0.07 per year, >0.09 per year</td>
<td></td>
</tr>
<tr>
<td>70 km/h+ (tree branches)</td>
<td>21 days per year; N/A, 24 to 26 days</td>
<td></td>
</tr>
<tr>
<td>90 km/h</td>
<td>2 days per year; N/A, >2.5 per year</td>
<td></td>
</tr>
<tr>
<td>120 km/h</td>
<td>~0.05 days per year; likely ↑, but % unknown</td>
<td></td>
</tr>
<tr>
<td>Lightning</td>
<td>Flash density per km km²</td>
<td></td>
</tr>
<tr>
<td>1.12 to 2.24 per year per km², Expected increase, % change unknown</td>
<td>~50-70%(Lg); ~10-20% (Sm)</td>
<td></td>
</tr>
<tr>
<td>Snowfall</td>
<td>Days w/ >10 cm</td>
<td></td>
</tr>
<tr>
<td>1.5 days per year; Trend decreasing but highly variable</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Days w/ > 5cm</td>
<td>5 days per year, Trend decreasing but highly variable</td>
<td>100%</td>
</tr>
<tr>
<td>Frost</td>
<td>229 frost free days, 249 frost free days, 273 frost free days</td>
<td>100%</td>
</tr>
</tbody>
</table>
Vulnerability Assessment Phase 2

PIEVC Phase 2 Climate Change Risk Map by 2050

4. High Temperature Maximum Above 40 C

Legend
- Feeder Risk Categories
 - No Risk
 - Low Risk
 - Medium Risk
 - High Risk
- Station Service Area Risk Categories
 - No Risk
 - Low Risk
 - Medium Risk
 - High Risk
Vulnerability Assessment Phase 2

PIEVC Phase 2 Climate Change Risk Map by 2050

8. Extreme Rainfall 100mm in Less than 24 Hours

Legend
- No Risk
- Low Risk
- Medium Risk
- High Risk

Station Service Area Risk Categories
- No Risk
- Low Risk
- Medium Risk
- High Risk
PIEVC Phase 2 Climate Change Risk Map by 2050
13. High Winds Greater Than 90km/h
Vulnerability Assessment Adaptation Opportunities

- Infrastructure strengthening
- Capacity planning
- Inspection and maintenance programs
- Data collection and quality
Climate Change Adaptation Roadmap

- Climate data validation
- Asset lifecycle
- Equipment specifications
- Capital and maintenance programs
- Planning data, tools, guidelines
- Design practices
- Construction standards
Ongoing System Resilience Enhancements
Capital & Maintenance Programs

Rear Lot Conversion

Overhead Infrastructure Relocation

Tree Trimming Standards

<table>
<thead>
<tr>
<th>Organization</th>
<th>Clearance from Bare Conductor (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Toronto (0.9 m = 3')</td>
<td>1 2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>Toronto Hydro (1.3 m = 4'2")</td>
<td></td>
</tr>
<tr>
<td>Other Utilities (2.4 m - 3.7 m = 8' - 12')</td>
<td></td>
</tr>
</tbody>
</table>
Ongoing System Resilience Enhancements
New Technologies

Breakaway Connectors

Stainless Steel Submersible Transformers
Opportunities

- Common climate data source
- Accelerated industry standards adaptation
- Vulnerability interdependencies
Disclaimer

The information in these materials is based on information currently available to Toronto Hydro Corporation and its affiliates (together hereinafter referred to as “Toronto Hydro”), and is provided for information purposes only. Toronto Hydro does not warrant the accuracy, reliability, completeness or timeliness of the information and undertakes no obligation to revise or update these materials. Toronto Hydro (including its directors, officers, employees, agents and subcontractors) hereby waives any and all liability for damages of whatever kind and nature which may occur or be suffered as a result of the use of these materials or reliance on the information therein. These materials may also contain forward-looking information within the meaning of applicable securities laws in Canada ("Forward-Looking Information"). The purpose of the Forward-Looking Information is to provide Toronto Hydro's expectations about future results of operations, performance, business prospects and opportunities and may not be appropriate for other purposes. All Forward-Looking Information is given pursuant to the "safe harbour" provisions of applicable Canadian securities legislation. The words "anticipates", "believes", "budgets", "could", "estimates", "expects", "forecasts", "intends", "may", "might", "plans", "projects", "schedule", "should", "will", "would" and similar expressions are often intended to identify Forward-Looking Information, although not all Forward-Looking Information contains these identifying words. The Forward-Looking Information reflects the current beliefs of, and is based on information currently available to, Toronto Hydro's management. The Forward-Looking Information in these materials includes, but is not limited to, statements regarding Toronto Hydro's future results of operations, performance, business prospects and opportunities. The statements that make up the Forward-Looking Information are based on assumptions that include, but are not limited to, the future course of the economy and financial markets, the receipt of applicable regulatory approvals and requested rate orders, the receipt of favourable judgments, the level of interest rates, Toronto Hydro's ability to borrow, and the fair market value of Toronto Hydro's investments. The Forward-Looking Information is subject to risks, uncertainties and other factors that could cause actual results to differ materially from historical results or results anticipated by the Forward-Looking Information. The factors which could cause results or events to differ from current expectations include, but are not limited to, the timing and amount of future cash flows generated by Toronto Hydro's investments, market liquidity and the quality of the underlying assets and financial instruments, the timing and extent of changes in prevailing interest rates, inflation levels, legislative, judicial and regulatory developments that could affect revenues, and the results of borrowing efforts. Toronto Hydro cautions that this list of factors is not exclusive. All Forward-Looking Information in these materials is qualified in its entirety by the above cautionary statements and, except as required by law, Toronto Hydro undertakes no obligation to revise or update any Forward-Looking Information as a result of new information, future events or otherwise after the date hereof.
Questions