A Matter of Permance: Geological Storage of CO_2 and Emission Trading Frameworks

Wolfgang Heidug

Paris, 26 September 2006

CO₂ capture and storage system

Options for Storing CO2

Nature of storage risks

Geological storage risks

Local

 Elevated gas-phase concentrations in the near-surface environment

 Effects of dissolved CO₂ on groundwater chemistry

 Effects that arise from the displacement of fluids by the injected CO₂ Global

 $-CO_2$ back to the atmosphere

How could it leak?

Injected CO₂ migrates up dip maximising dissolution & residual CO₂ trapping

Shell International Renewables Risk Management

- Site Selection
- Risk Assessement
- Monitoring and Verification

Remediation Planning

What makes a good storage site?

Stratigraphy	Caprock - Low permeability - Large thickness - Lateral continuity - Absence of faults	Storage formationHigh permeabilityLarge thicknessAreally extensive
Geomechanics	Tectonically stable Favorable stress conditions on faults and fractures	
Geochemistry	Mineralogies that - Buffer acidity increase - Promote trapping as an immobile solid phase	
Anthropogenic Factors	Location and conditions of abandoned wells	

Long-term risk assessment: how to do it?

- Feature: characteristic of system components boreholes, lithography, nearby communities, . . .
- Event: a particular happening pipe fracture, nearby earthquake, meteorite impact . . .
- **Process:** natural phenomenon corrosion of casing, dissolution of packing material, convection of groundwater . . .

Scenario Development

Monitoring: Tailored to the storage site

Remediation

What can be achieved?

According to IPCC SRCCS fraction retained in appropriately selected and managed geological reservoirs is

- very likely to exceed 99% over 100 years, and
- is likely to exceed 99% over 1,000 years.

"Likely" is a probability between 66 and 90%, "very likely" of 90 to 99%

Local risk of geological storage can be comparable to risks of current activities

- Natural gas storage, EOR

What does this mean?

Seepage from storage site is a function of risk management

IPCC 2006 Guidelines for GHG Inventories support this view

Use of temporary or long-term emission reduction credits for CCS not suitable

IPCC Guidelines on CCS Estimation Methodologies in National GHG Inventories

The 2006 Guidelines give a complete methodology for estimating leakage from CCS

CCS divided into three systems:

- 1. Capture and compression system
 - treated separately in the appropriate sector
 - Volumes two and three (e.g. stationary combustion)
- 2. Transport system
- 3. Storage system
 - Treated together in Volume two, Chapter five

Estimating, Verifying & Reporting Emissions from CO₂ Storage Sites

Relevance

- 2006 IPCC Guidelines provide internationally approved basic elements for site selection, risk assessment, and monitoring
- Define good practice for national government CCS approval regimes
- Inherently support the evolution of emission trading frameworks for CCS

Immediate needs:

- Operationalise GL into a CDM methodology
- Liability regimes
- Offsets for remerging CO₂